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Introduction
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All models start from the master equation

Impossible to solve analytically
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Two kinds of methods

� Monte Carlo
� Mean Field
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Two kinds of modeling:

• At the atom level 
• Atomistic Kinetic Monte Carlo (AMC)
• Self Consistant Mean Field (SCMF)

• At a mesoscopic level
• Object Kinetic Monte Carlo (OKMC)
• Rate theory (RT)
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probability for the system to be in configuration       

at time     , knowing that it is their at time zero

Selection of the effective transition:
� all the probability of the possible transitions stack  along a 

segment of length

� a marker randomly place on this segment. 

�configuration     is replaced by the new one and the  time    

by the time ,          and so on.

Monte Carlo: basis

Simulation of the trajectory of the system in the 
phase space 

Residence time algorithm
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Determinist description instead of the stochastic

� Only the mean trajectory                                  in the phase space is 
considered. 
�The system is described by the set of ODE’s equations

Within the most general situation the higher moment s  has to be 
considered

Rate theory basis
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Main ingredients of the modeling
�The configurational Hamiltonian:

� the pair interaction between a A atom on the i site a nd 
a B atom on the site j,  the triplet interaction          , etc.
�The jumps frequencies of point defects (i or v). 

Basis © G. Martin, M. Nastar, F. Soisson, …

� Rigid lattice 
� Interacting atoms of species A, B, .. and vacancies and/or 

self interstitial atoms (SIA) distributed among the Ns sites 
of the lattice

� State of the system described by occupation numbers 1            
if the site i is occupied by species A  and zero oth erwise.

� Configuration of the alloy defined by the state vec tor 

Atomistic scale calculations
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Jump frequencies I
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Jump frequencies II
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More valuable method

© F. Soisson
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Atomistic Kinetic Monte Carlo (AKMC)

(1) Frenkel pair formation:

(2) Vacancy jumps :
© G. Martin

(3) Interstitial jumps : XY « dumbbells »

(4) V/I recombination 

(5) Point defect annihilation at sinks
(perfect sinks)
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Point defect sink sites
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Energy = sum of pair interactions Vij on rigid lattice

© F. Soisson
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Atomistic Kinetic Monte Carlo (AKMC)

RIP in under-saturated solid solutions

0.01 dpa 0.33 dpa 2.58 dpa

=
= =

φ =
=

-6 -1

800
5% ( 8%)

10  .

planar point def
/ 0.075

ect sink

v v
AB

eq
B B

T K
C C

dpa s
D D

>>
undersaturated

vac vac
A BD D

Concentration Profile
© F. Soisson



11/12/2008, 14hICTP-IAEA Workshop Monte Carlo and Rate theory (Barbu2) 12

Atomistic Kinetic Monte Carlo (AKMC)

Concentration profiles 
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Atomistic Kinetic Monte Carlo (AKMC)

NEUTRON IRRADIATION OF AN FeCuNiMnSi ALLOY

Fe-0.2Cu-0.53Ni-1.26Mn-0.63Si (at.%)

Flux: 6.5 10-5 dpa.s-1

Dose: 1.3 10-3 dpa

T: 300°C

V-solute complex (4.2 1022 m-3)

SIA-solute complexes

Small solute clusters (3Cu + 3Si + 4Mn)
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© E. Vincent et al
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Mesoscopic approach

• Object Monte Carlo (OKMC)
• Rate theory (RT)

“gas” of dilute objects

Nature
• point defects
• solute atoms 
• clusters, 
• etc. 
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Object Monte Carlo (OKMC)

Object positions: ‘discreet’ or continuous coordinat es

OKMC
BIGMAC (LLNL)

LAKIMOCA (EDF)

Even Based Monte Carlo (EBMC)
JERK (CEA)

recombinaison
capture

émissio
n

dissiociation

élimination
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Algorithm :

1. the total rate for all events 

2. An event is chosen randomly between 0 and       .

3. Time is increased by 

4. An object among the       is chosen randomly and the event 

is carried out.

5. The next step is perform coming back to 1 and so on.

binding energy of the emitted particle to the clust er.

Object Monte Carlo (OKMC)

( )( )0 exp /B mE E kTΓ = Γ − +
BE

e e
e

R N= Γ∑
R

log( ) /t Rζ∆ = −

eN

Objects execute random diffusion jumps at first neighb ors  
with a probability given by the jump frequency:

( )0 exp /mE kTΓ = Γ −
Dissociation rate of a cluster, usually the emission of a monomer:

© E. Domain et al, Caturla et al, …
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Algorithm 
• chooses a time step      
• calculates the delay       of each possible reactio n
• selects the shortest event        in the list of al l possible events
• executes the event deleting if necessary the defect s that have interacted and 
computing the delay associated with the newly creat ed defect if any
• updates the actual time by adding 
• reduces the remaining delays by  
• repeats steps 3, 4 and as far as no other event is possible before the end of       

Elementary event = binary encounters of two objects  (the migration of a mobile 

object is not an even in itself).

Probability distribution that two defects 1 and 2 a t distance   reacts: 

r reaction radius

The delay of interaction     obtained by sampling           :

random number over [0,1]

Even Based Monte Carlo (EBMC)
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OKMC
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flux effect

Ferritic model alloy   70°C
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DEFECT POPULATION at 0.1 dpa

© C.Domain, C. becquart, L. Malerba, 
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EBMC
Numerical simulations / 
experimental resistivity recovery

Kinetic Monte Carlo Jerk
size and time evolution of 
the defect population

• Excellent agreement with the experimental results.
• In (≥≥≥≥ 4) migration not required to reproduce the experime nts.
• Peak position very sensitive to mechanisms rates.

+
Macroscopic 
Resistivity 
recovery
Experiments
by Takaki et al.

Ab initio SIESTA
Energetics and 
migration of defects

© J. Dalla Torre, C.C. Fu, …, …
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Location of the object no more considerate
If       the number   of object of type    , in a vo lume

• If only  SIA (dislocation loops) and vacancy cluste rs (voids), the 

state vector is:

the number of vacancy clusters (voids)  made of     vacancies           

and             the number interstitial clusters (loo ps) made of SIA’s.

• Average number of SIA clusters, for example:

•

•Rate theory is obtained in the thermodynamic limit:

Rate theory basis

jN j Ω
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Rate theory basis

Concentration per unit volume of object

Master equation for rate theory (deterministic equation) 

If      is a mobile, elimination term of clusters on fix sinks

must be added

If clusters are generated in cascades, a source term  

must be added

nI
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