ITER, fusion, and the conceptual design of
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ITER — the history

* An agreement on International Thermonuclear Experimental
Reactor was signed by M. Gorbachev and R. Reagan in Reykjavik
In 1986.

e 1992: the US, the USSR, the EU and Japan began a 6-year period
of Engineering and Design ITER studies.

e 1998: the US withdraws from the ITER project under Congressional
direction. Other parties carry on with the work.

e 2001: studies show that all the above issues can be successfully
resolved with a smaller tokamak design. China and Korea express
Interest, joining in 2002. India joins in 2004. In 2003 the US re-joins
ITER negotiations.
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"
Seven parties involved in the construction of ITER

(ITER Internatlonal Thermonuclear Experlmental Reactor)

"4l ITER Partners g ¢
E‘{ i
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ITER — Key facts

e Objective: to demonstrate the scientific
and technological feasibility of fusion
power

* Designed to produce 500 MW of fusion
power (tenfold the energy input) for an
extended period of time ~500 seconds =
5 to 10 minutes at a time

» 10 years construction, 20 years operation |

e |nitial construction cost estimate: 5 bhillion | A
Euros for construction, and 5 billion for
operation and decommissioning
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Cadarache (near an existing CEA site)

= Route for ITER components
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Why do we need ITER and what is fusion?
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Why do we need ITER?

SCIAMACHY mean tropospheric NO; 2004 KNMI/IASB/ESA

—150 —120 -390 -0 —30 0 30 €0 90 120 150

650
09

30
(0]

=30
og -

Pollution levels associated W|th the use of fossil fuels are critical

www.temis.nl

09—

sy “ KNMI/IASB/ESA

150  -120 90 60 -30 0 30 60 120 150
NO, tropospheric column density [10'5 molec. /cmz]

0 1 2 3 4 6 8 11 15 20 **

*
. 1 /1N Novemper Zuus UKAEA Fus *”r E
ICTP Trleste i i i 'Nnrkmg * *

ITER, fusion, and fusion power plant design e ST



" A
Why do we need ITER?

0.8
Global air temperature . .
= 9671 2001 anomaly +0.43°C There is a correlation between
® o4 (éndwarmestonrecord) the amount of CO, emitted into
. the atmosphere, due to the use
§ of fossil fuels, and the average
= global temperature. Global
%‘ W warming requir_es developing
= power generating technologies
not relying on fossil fuels.
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The end of oil? (and other fossil fuel resources)

/ In 1956 M.K. Hubert of Shell
L correctly predicted that the US
!_' oil production would peak at
i , \ ~ ol @round 1970.
. \ — Calculated
S Vo
2 Price lenp? 8wing Midpeint
0 - [
1680 1860 1900 1020 1@40 1080 1@80 2000 @nl
50
World rate of oil production (in ol
thousands of kbarrels per day). ol Warld Midpoint

The Swing Case assumes a price
leap when Middle East production 20}
reaches 30% of world total. This

model analysis was performed 1850 19“’5-. 19:‘: n i‘;:‘ s:’:“ 2080
and published in 1999. Note the g v
question mark after “Price leap”.
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Alternative energy sources: nuclear fission

INSIDE THIS WEEK: TECHNOLOGY QUARTERLY

Waiting for Petrasus
The The credit crisis, continued

.. . . Economist In search of the good company
Nuclear fission is a proven alternative indi's aiine magnate

but has its own issues. ammtioumn s Tt to abollh Begium
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* Public concerns on safety.

* Long lived radioactive waste
products (many thousands of
years) that require
transportation and re-processing.

China has vowed to increase the nuclear content of its power

generation mix to 4 per cent by 2020 from the current 2 per cent,

which can be translated into some 30 nuclear plants totalling 40

gigawatts of installed capacity. r 2008 UKAEA
ICTP Trieste ITER, fusion, and fusion power plant design



Alternative energy sources: nuclear fission

The VHTR concept
addresses two of the
ISSues: power
generation and

that could be used as
fuel for ground
transportation
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Wind, wave, solar, hydro

Renewable energy sources are attractive options

1. Germany - 20,622MW
at present and offer long term, clean energy 2. Spain - 11,615MW
reserves 3. USA - 11,603MW

' 4. India - 6,270MW
However : 5. Denmark - 3,136MW
Low energy density 6. China - 2,604MW

7. ltaly - 2,123MW
*Fluctuations in time require storage systems, 8. UK - 2,034MW

9.

Portugal - 1,716 MW
10. France - 1,567MW

-Only solar power generation has the potential (Source: BWEA, 2007)
needed for making global impact. |+, November 2008 oy
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Fusion as a Long Term Alternative
Can we control it and use It?

*The fusion process releases vast amounts of energy from the sun
and stars (confirming that it is a feasible way of power generation).

*The energy released per kilogram of fuel is 10 million times more
than that released by burning a kilogram of coal.

=But: we need to control the fusion process and the energy it
releases. This requires an approach different to conventional
burning of fuel.

=\We have to create very hot p/asma —

\We have to develop suitable materials  —
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What Is plasma?

aNeurth state of matter, the others being solic;
eBlVIOSt of the Universe is in the plasma state:
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The fusion process In plasma

Fusion occurs in a plasma when two light nuclei (D+T)" are forced together,
producing a larger nucleus (He*) + a neutron (n).

The combined mass of the two
small nuclei is greater than the
mass of the nucleus they produce.

The lost mass Am (0.4%) is changed
into energy.

We can calculate the energy
released using Einstein’s famous
equation:

E = Am C?

“ Deuterium & Tritium are hydrogen isotopes

* X
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Fusion Is the process powering the Sun...

Gravity confines the plasma in
the Sun. The fusion process
burns up the hydrogen and the
energy Is radiated away.
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Magnetic fusion research

The three main conditions for starting the fusion
process in a plasma are:

1. The plasma density needs to be below a threshold
value (otherwise plasma develops instabilities).
Vacuum pumps are required for this.

2. The plasma temperature needs to be above a
threshold value. Additional plasma heating is
required.

3. The plasma needs to be contained for times
longer than a threshold value. The magnetic field
IS required to ensure plasma confinement.

*
17th November 2008 UKAEA g:ug’g‘;n*i
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Magnetic fusion research

P =nk,T
n ~107° xatmospheric density; T ~10° xambient temperature

P ~1 bar

Although even the largest tokamaks contain in total no more than 0.01 g
of hydrogen mixture at any one time, the very high temperature of the
plasma means that plasma pressure may reach 1 bar = atmospheric
pressure. Plasma has to be confined and held together by super-strong
magnetic fields, created by (superconducting) magnets.
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Magnetic field is required to confine the plasma

Chaotic motion,
rapid loss of
energy

Charges in a magnetic field

Gyro motion
+ collisons

*
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It is not enough to merely confine the plasma - it must be
heated so there is sufficient energy for the fusion reaction to

take place
Yo TE
v Coulomb
-_E Barrier i3
=
; '
0 e Nuclei in the plasma must

overcome the repulsive
Coulomb force in order to get
close enough to react

Aliractive
Nuclear
Potential
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The Pinch Effect - 1940’s

Peter Thonemann and Sir George
Thomson'’s idea _
Alan Ware and Sir George

Thomson at Imperial College.

3 X,
N 3
Plasma ring unstable
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The tokamak revolution

A.D, SAKHAROV
Theory of etic thermonuclear reactor
(Part ILC)*

The properties of a high-temperature plasma in a magnetic field were
expounded in the paper by Tamm [1]. He demonstrated the possibility of the
realization of an MTR.** In this paper we shall consider other questions
conecerning the theory of MTR's,

Section 1, Thermonuclear reactions. Bremsstrahlung,

Section 2, An account of large model, Critical radiua, Looal

phenomena near the wall.

Section 3, Power of magnetization, Optimal construction,

A. D. Sakharov

Performance of active matter.

Section 4, Drift in non-uniform magnetic field, Suspended

H, 352(? (] current., Inductive stabilization,
2 Volume =0.96x10° cu® : ;

= 8 mx Section 5, Froblem of plasma instability.

D=2 » Area =0.96x10" cu®

n.=3.0:x10-‘ cu— | Release of thermo- . Thermonuolear Reactions, Bremsstrahlung

nuclear power following reactio take place in an MTR
7. — 100 keV e fo ng ions may place 1
° 1'[.6::.'!.06 erg/ 3 e

1% —» H? - p+ 3Mev- 1 Mey
3t — He' - n--0,820lev}- 2.46 May| Frimary reactions
! A p 4 14,0 Mev—+ 3.7 Mev|
- o LaHevL 5.5 .”.G’T_f Secondary reactions

" by the charged particles and which maintain the thermo-

ion in the MTR are underlined. The time T required for a

I “n done in 1951,
. <l L N < aagneflic Thermonuelear Heactor,
. TOROIBAL
FINLR @ 0Ik

-2] =

e : Fepiss O
Tokamak as a theoretical concept was proposed in 1951.

17th N ber 2008 *
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The tokamak™ revolution

B Fusion research began in Britain in the 1940’s.

= Inthe 1950’s it was secret (cold war) until 1956, when
Kurchatov gave a talk at Harwell in the UK. 1958: the first
International conference on fusion.

m The 1960’s saw the development of the “Perhaps-trons” at
Culham (UK), Kurchatov (USSR), Los Alamos, Livermore,
Princeton (USA) and elsewhere. Russian claimed that they
achieved temperatures 10 times higher than elsewhere (10
million degrees).

= In 1969 British scientists were sent to Kurchatov Institute
(Moscow) to make measurements on the T3 tokamak.
Russian claims, i.e. T~10 million degrees, were confirmed.

= After 1969 many tokamaks were built.

*
to-ka-ma-k [Russian] means toroidal chamber with magnetic coils

17th November 2008 UKAE A w usion
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ICTP Trieste

The oll crisis & large tokamaks

The oil crisis of 1973-74 produced a turnaround for the
funding of energy research.

Fusion experiments indicated that a very large tokamak
(as large as JET!) would reach break-even conditions.

1973-1978 large tokamaks designed: EU JET, USA TFTR,
Japan JT-60 and Soviet Union T-20.

These devices were completed in 1983, except T-20 (later
downgraded to T-15 that never really operated).

1983-1990: the “tokamak race”.

* ¥ %
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The JET building at Culham Science Centre

Rt *
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" JEE
The JET Tokamak*

Volume —100 m3 Power 40 MW

£
o

n-‘#-a_. e M

Height 13 m

* : Man
Operated since 2000 under European
Fusion Development Agreeement (EFDA) ;- X 5 \E i
A
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Heating with 20 MW — Temperature up to 200,000,000 °K
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JET has provided key design data for ITER

— rd
105 ¢ JET ¢ AUG v CMOD ~
TER . m ASDEX O JET2M  m JT60U j
[ AD3D #START o TV N
JET # PDX # PBXM ¥ TDEV &.”
o g X'| ITER
= - v COMPASS
compass-c . E
[1)]
ASDEX-V = 0.1
c F J
o ;
3 JET
o
o
i 3
= w
2 o
o 2 4 6 E = 0.01¢ /
Major radus; (m) - 4
i ’A-#/ World Wide Data Base
Cross section of present EU D- . (13 Devices)
#
Shape tOkamakS Compared to 0001_” Ll Ll Ll L1l
the ITER project 0.001 0.01 0.1 1 10
Predicted Confinement Time
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Conceptual design of a fusion power plant

D+T=%He+n

v
l
3
| // /-

A

.,‘..%
b *

Schematic view of a fusion power plant, total height

DEMO: radiation da_mage from approximately 20m. The items for which material
14.1 MeV neutrons is expected performance is particularly crucial are the blanket, shown
to reach 100 dpa in the first wall in blue, and the divertor, red. The vacuum vessel, grey,

- has access ports for maintenance which pass between
materials over 10 full POwWer the magnets, brown. [D. Ward, S. L. Dudarev, Materials

years. DPA = displacement per 1 Today, 2008, in press]
atom. ER, fusion, and fusion power plant design NEANCNSIN N
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Conceptual design of a fusion power plant

The main elements of a fusion
power plant are:

. the magnets - which confine the plasma and patrtially
insulate it against heat loss, allowing the energy-
carrying neutrons to escape;

. the vacuum vessel — which prevents the deuterium-
tritium fuel from being contaminated by other gases;

. the blanket — which absorbs the high-energy neutrons
produced in the fusion reactions in the plasma, and
extracts their energy through collisions with atoms in
the blanket materials, whilst at the same time
producing, by reaction between the neutrons and
lithium compounds, the tritium that is subsequently
burnt in the plasma;

. the divertor — like the exhaust on a car, this part of the
fusion power station extracts the burnt fuel (helium),
hence maintaining the purity of the deuterium-tritium

mixture.
* *
17th November 2008 o
Fusion *
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Conceptual design of a fusion power plant

The vacuum vessel is required because the density of plasma is very low (there is
an upper empirical limit on plasma density, above which it tends to develop
instabilities). The 100 m3 JET tokamak contains only ~0.01 grams of D-T fuel at
any one point in time.

The shielding efficiency of the blanket + the vacuum vessel should satisfy limits
imposed by the fact that the superconducting magnets must not generate too
much heat from nuclear reactions induced by the tiny flux of neutrons still
penetrating through the structure. Also the dose rate outside the vessel should
remain within safety limits for the maintainence of the power plant. Fusion
neutrons have much higher energy (~14 MeV) than fission neutrons (~1 MeV
maximum).

The neutron wall load in ITER is expected to vary between 0.59 MW/m? maximum
for the inboard facing parts of the first wall (area ~200 m?), and 0.78 MW/m?
maximum for the outboard facing parts of the first wall (area ~470 m?). The total
neutron power is ~300 MW, which is ~4/5 of the total power generated by the
plasma. In a fusion power plant the neutron wall load it is expected to reach ~2
MW/m?2, giving the total output power approaching 2 GW.

*
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Conceptual design of a fusion power plant
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The tritium breeding blanket, shown
schematically in this figure, is required to
produce tritium, which is one of the two
isotopes of hydrogen required for
sustaining fusion reactions in the plasma.
Deuterium is going to be extracted from
ocean water, whereas tritium is going to be
generated using the fusion neutrons via
the reaction

n+SLi—T+*He+4.78MeV.

A part (but no all) of the 14 MeV energy of
neutrons coming out of plasma will hence
be spent on tritium re-generation. Tritium
will be released from the lithium compound
by the flow of helium used as coolant.

17th November 2008 Rl
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Conceptua deS|gn of a fusion power plant

The divertor, which is potentially one of the
most technologicaly challenging part of a
fusion power plant, will be subjected to
direct impact of particles coming from
plasma. Surface erosion, neutron
bombarment, and extremely high power
load, leading to high temperature of
operation, are the three major challenges
that will need to be addressed in the power
plant design. This poses the problem of
compatibility of materials since temperature
variations during periods of “cold”
maintainence and “hot” operation will
impose severe limits on the range of
thermal expansion coefficients for materials
used for constructing the divertor.

o ; x,
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Main Irradiation Conditions

ITER DEMO Reactor
Fusion Power 0.5 GW 2-2.5 GW 3-4 GW
Heat Flux (First Wall) 0.1-0.3 MW/m? 0.5 MW/m? 0.5 MW/m?
Neutron Wall Load (First Wall) | 0.78 MW/m? < 2 MW/m?2 ~2 MW/m?
Integrated wall load (First Wall) | 0.07 MW/m? 5-8 10-15

(3 yrs inductive MW.year/m? | MW.year/m?

operation)
Displacement per atom <3 dpa 50-80 dpa 100-150 dpa
Transmutation product rates ~10 appm He/dpa | FM steels: ~10 appm He/dpa
(First Wall) ~45 appm H/dpa | FM steels: ~45 appm H/dpa

Fission Reactors: 0.2 to 0.3 appm He/dpa

Increasing Challenge
17th November 2008 U
ICTP Trieste ITER, fusion, and fusion power plant design
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