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Introduction

In the afternoon of the 3rd of May 1956 at Cavendish Laboratory, Cambridge, England, Mike Whelan

and Bob Horne were surprised to see “... the astonishing sight of short-line features dashing about...” in

the field of view of the electron microscope that they were using. This was the first observation of disloca-

tions in a metal. The technique that they used was what is now known as bright-field electron microscope

imaging. This set of notes explains how a diffraction image of a defect (for example a dislocation or a

small dislocation loop) is formed, what determines the limit of spatial resolution of a conventional elec-

tron microscope image, and why single point defects in metals have not been observed yet, and how to

interpret images of small dislocation loops.
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Figure 1: Mike Whelan (centre) with Bob Horne (left) and Chris Jackson (right) in the (old) Cavendish

Laboratory, Cambridge, in 1955. J. D. Watson and Francis Crick built their double helix model

of DNA in an adjacent room shortly before this photograph was taken.
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Figure 2: M. J. Whelan (left) with P. B. Hirsch (right) in Caius College, Cambridge, in the spring of 1960.

EURATOM/UKAEA Fusion Association, Culham, UK Page 4



Diffraction Imaging of Defects and Dislocations S. L. Dudarev

Figure 3: M.J. Whelan in his room in Caius College, Cambridge, in 1956.
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Figure 4: X-ray diffraction patterns used for the identification of dislocation structures (left) and the struc-

ture of DNA (right) before the development of electron microscope imaging techniques.
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Figure 5: A single crystal aluminium specimen deformed 5% and electropolished, showing bowed dislo-

cations near A and a slip trace behind dislocation B. See P. B. Hirsch, R. W. Horne and M. J.

Whelan, Direct observation of the arrangement and motion of dislocations in aluminium, Philos.

Mag. 1 (1956) 677–684. This photograph was taken in 1956 and published 30 years later in:

M.J. Whelan, Journal of Electron Microscopy Technique 3 (1986) 109–129.
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Figure 6: Schematic diagram illustrating the principles of operation of an electron microscope. From

http://www.mete.metu.edu.tr/Facilities/Service/TEM/TEMtext/TEMtext.html
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Scattering by a Periodic Potential

Electron diffraction imaging, and the interpretation of electron microscope images, relies on the fact

that it is possible to find an accurate solution for the Schrödinder equation with a periodic potential de-

scribing the interaction of electrons with atoms in a crystal

− h̄2

2m
∇Ψ(r) + V (r)Ψ(r) =

h̄2k2

2m
Ψ(r)

Here k is the wave vector of a high-energy (∼ 100 keV) electron incident on the crystal and m is the

mass of the electron. Interaction between the electron and the crystal is described by potential V (r).

The potential is a sum of electrostatic fields of electrons and atomic nuclei

V (r) =
∫ e2ρ(r)

|r− r′| −
∑
n

Zne
2

|r−Rn|

and is often written as a sum of potentials of individual atoms V (r) =
∑

n V (r−Rn).
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Scattering by a Periodic Potential

In a perfect crystal the potential V (r) felt by the incident high-energy electrons is a periodic function

of r and hence it can be written as a Fourier series (see for example Marshall and Lovesey (1971))

V (r) =
∑
n

V (r−Rn) =
∑

G

VG exp(iG · r).

Here G’s are the reciprocal lattice vectors. The Schrödinger equation now acquires the form

− h̄2

2m
∇Ψ(r) +

[∑

G

VG exp(iG · r)
]

Ψ(r) =
h̄2k2

2m
Ψ(r),

where in the vacuum the wave function describing the incident high-energy electrons is Ψ(r) = exp(ik·
r). The current density associated with the incident electrons is

j(r) =
ih̄

2m
[Ψ(r)∇Ψ∗(r)−Ψ∗(r)∇Ψ(r)] =

h̄k

m
= v.

This equation shows that wave function exp(ik·r) describes a beam of electrons containing one particle

per unit volume, all moving with the same velocity v = h̄k/m. Obviously exp(ik · r) does not satisfy

the above Schrödinger equation.
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Scattering by a Periodic Potential

The Schrödinger equation is solved by asserting that inside the crystal the wave function is a super-

position of Bloch waves

Ψ(r) =
∑

j

αj

∑

G

CGj exp(i[k(j) + G] · r).

The unitary matrix CGj is found by substituting this form of the solution into the original Schrödinger

equation and solving the resulting system of equations for eigenvalues and eigenstates numerically.

Coefficients αj are chosen to satisfy the boundary conditions at the surface where electrons first enter

the crystal foil.

A. Howie and M. J. Whelan in 1961 approached the problem from a more practical, and useful, point

of view [see Proc. Roy. Soc. (London) A267 (1961) 217-237]. They thought that the presence of the

Fourier components of the potential would result in a gradual transformation of the incident plane wave

exp(ik · r) into a superposition of plane waves of the form

Ψ(r) =
∑

G

φG(r) exp(i[k + G] · r)

where the slowly varying functions φG(r) would take care of both the effect of periodicity of the crystal

and of the boundary conditions.
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Scattering by a Periodic Potential

They substituted
∑

G φG(r) exp(i[k + G] · r) into the Schrödinger equation and found that the set

of functions {φG(r)} satisfies a closed system of coupled equations

i
h̄2

m
[k + G] · ∇φG(r) =

h̄2

2m
[(k + G)2 − k2]φG(r) +

∑

G′
VG−G′φG′(r).

Note that in these equations we neglected the second-order derivatives. This is equivalent to neglecting

the effect of coherent back-scattering of high-energy electrons from the foil. In the simplest case where

we retain only two coupled equations in the above system of equations, we arrive at the famous two-beam

Howie-Whelan equations of dynamical electron diffraction.

ih̄v
d

dz
φ0(z) = V0φ0(z) + V−GφG(z),

ih̄v
d

dz
φG(z) = V0φG(z) + εGφG(z) + VGφ0(z).

where

εG =
h̄2

2m
[(k + G)2 − k2]

is a parameter representing the measure of deviation of the wave vector of the diffracted beam exp(i[k+

G] · r) from the constant energy surface (the so-called Ewald sphere) k2 = const.
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Dynamical Diffraction of High-Energy Electrons

The boundary conditions for the Howie-Whelan equations are very simple: there is an incident wave

and the amplitude of the diffracted wave is zero

φ0(0) = 1

φG(0) = 0.

Looking for a solution of the Howie-Whelan equations in the form φ0(z), φG(z) ∼ exp(λz) we find

a system of two equations determining the values of parameter λ. The characteristic equation χ(λ) is

given by the formula

χ(λ) =

∣∣∣∣∣∣∣
ih̄λ− V0 −V−G

−VG ih̄vλ− V0 − εG

∣∣∣∣∣∣∣
= 0.

The roots of this equation are

λ1,2 = −i
V0

h̄v
− i

2h̄v

(
εG ±

√
ε2
G + 4|VG|2

)
,

and the solutions of the Howie-Whelan equations have the general form

φ0(z), φG(z) ∼ A exp(λ1z) + B exp(λ2z).
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Dynamical Diffraction of High-Energy Electrons

Using the boundary conditions we find

φ0(z) =
1

2


1 +

ε√
ε2 + 4|VG|2


 exp

(
−i

V0

h̄v
z − i

ε

h̄v
z − iz

2h̄v

√
ε2 + 4|VG|2

)

+
1

2


1− ε√

ε2 + 4|VG|2


 exp

(
−i

V0

h̄v
z − i

ε

h̄v
z +

iz

2h̄v

√
ε2 + 4|VG|2

)

φG(0) =
V−G√

ε2 + 4|VG|2
exp

(
−i

V0

h̄v
z − i

ε

h̄v
z − iz

2h̄v

√
ε2 + 4|VG|2

)

− V−G√
ε2 + 4|VG|2

exp
(
−i

V0

h̄v
z − i

ε

h̄v
z +

iz

2h̄v

√
ε2 + 4|VG|2

)
.
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Dynamical Diffraction of High-Energy Electrons

This can be written in a more comprehensible form by using the trigonometric functions cos(x) =

[exp(ix) + exp(−ix)]/2 and sin(x) = [exp(ix)− exp(−ix)]/2i, namely

φ0(z) = exp
(
−i

V0

h̄v
z − i

ε

h̄v
z
)

cos
(

z

2h̄v

√
ε2 + 4|VG|2

)

+
iε√

ε2 + 4|VG|2
exp

(
−i

V0

h̄v
z − i

ε

h̄v
z
)

sin
(

z

2h̄v

√
ε2 + 4|VG|2

)

φG(0) = − 2iV−G√
ε2 + 4|VG|2

exp
(
−i

V0

h̄v
z − i

ε

h̄v
z
)

sin
(

z

2h̄v

√
ε2 + 4|VG|2

)
.

This is a important result showing that the amplitude and the intensity of the transmitted and diffracted

beams oscillate as a function of the thickness of the crystal. This should give rise to thickness fringes

seen in electron microscope images of thin crystalline foils, where the thickness of the foil varies across

the field of view. Note that the smaller the value of parameter ε the higher is the intensity of the diffracted

beam.
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Figure 7: An electron microscope image of the edge of a thin crystal showing thickness fringes resulting

from dynamical diffraction of electrons, as described by the Howie-Whelan equations. From

http://eml.masc.udel.edu/ gallery.htm
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Scattering by a Distorted Crystal

In a distorted crystal (i.e. in a crystal containing a defect, for example a dislocation) the potential V (r)

can no longer be treated as a periodic function of coordinate r. In other words, coordinates Rn no longer

form a periodic lattice. If we now evaluate the Fourier component of the potential using the ”old” set of

reciprocal lattice vectors G we find

VG =
1

Ω

∫
drV (r−Rn) exp(−iG · r) = VG exp(−iG ·Rn),

where Ω is the volume of a unit cell. In a perfect crystal G ·Rn = 2π × (integer) and exp(−iG ·
Rn) = 1. In a distorted crystal this is no longer the case, and an approximation often used when

describing a distorted crystal, states that the Fourier components of the potential VG are functions of the

slowly varying field of atomic displacements

VG(r) = VG exp[−iG ·R(r)].

But is it appropriate to use the field of displacements itself as a physically relevant representation of the

defect? The starting point of the theory of elasticity is a statement that the field of displacements is

irrelevant, and that it is only the field of the derivatives of displacements ∂Ri/∂xj that has any physical

significance.

EURATOM/UKAEA Fusion Association, Culham, UK Page 17



Diffraction Imaging of Defects and Dislocations S. L. Dudarev

Scattering by a Distorted Crystal

Let’s take a look again at the equations for the slowly varying amplitudes of the transmitted and

diffracted beams

i
h̄2

m
[k+G] ·∇φG(r) =

h̄2

2m
[(k+G)2−k2]φG(r)+

∑

G′
VG−G′ exp{−i[G−G′] ·R(r)}φG′(r).

Since the phase of amplitudes φG(r) does not influence the observed intensities of the beams, we can

change the definition of these functions by including the phase factor exp[−iG ·R(r)], namely

ΦG(r) = φG(r) exp[iG ·R(r)].

The meaning of this gauge transformation is simple. In the original formulation of the problem the direction

of propagation of beams was fixed, while the orientation of the crystal varied locally from one point to

another. In the new representation the crystal remains ”stationary” while the local orientation of the

diffracted beams varies. The gauge-transformed equations for the amplitudes have the form

i
h̄2

m
[k+G]·∇ΦG(r) =

h̄2

2m
[(k+G)2−k2]ΦG(r)− h̄2

m
[k+G]·∇[G·R(r)]ΦG(r)+

∑

G′
VG−G′ΦG′(r).
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Scattering by a Distorted Crystal

The two-beam Howie-Whelan equations describing scattering by a distorted crystal have the form

ih̄v
d

dz
Φ0(z) = V0Φ0(z) + V−GΦG(z),

ih̄v
d

dz
ΦG(z) = V0ΦG(z) +

(
εG − h̄2k

m
G · d

dz
R(r)

)
ΦG(z) + VGΦ0(z).

where in comparison with the case of diffraction by a perfect crystal the parameter εG characterising

the deviation of the wave vector of the diffracted beam from the constant energy surface is now a local

quantity

εG(r) =
h̄2

2m
[(k + G)2 − k2]− h̄2k

m
G · d

dz
R(r).

From analytical solutions available in the case of a perfect crystal we know that the intensity of the

diffracted beam is maximum in the case where ε = 0. This fact provides a vital clue for understanding

how a diffraction contrast image is formed.

EURATOM/UKAEA Fusion Association, Culham, UK Page 19



Diffraction Imaging of Defects and Dislocations S. L. Dudarev

Figure 8: Schematic diagram illustrating the process of formation of a diffraction image. Electrons pass-

ing through the centre of a dislocation do not form a strong diffracted beam ΦG since all the

crystallographic planes have ”wrong” orientation. However electrons incident on atomic planes

at the right angle undergo dynamical diffraction and form an intense image.
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Weak-Beam Imaging

David Cockayne [D. J. H. Cockayne, I. L. F. Ray and M. J. Whelan, Philos. Mag. 20 (1969) 1265] first

noted that the condition

εG(r) =
h̄2

2m
[(k + G)2 − k2]− h̄2k

m
G · d

dz
R(r) ≈ 0

should result in an intense dark-field (i.e. obtained using the diffracted rather than transmitted beam)

image. If the reciprocal lattice vector G used for imaging is large, then the width of the region where the

above condition is valid is very small, resulting in an image characterized by high spatial resolution. This

has led to the development of a new, the so-called weak-beam, method of imaging dislocations and small

dislocation loops.
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Figure 9: Prof. Lianmao Peng (left) and Prof. David Cockayne (right) at a dinner in Linacre College,

Oxford, in November 1996.
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Figure 10: The Takagi triangle (S. Takagi, Acta Crystallographica 15 (1962) 1311) illustrating the limits

of validity of the column approximation adopted in the Howie-Whelan equations where the

transmitted and the diffracted beams are assumed to propagate in exactly the same direction.
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The Howie-Basinski Equations

The Takagi triangle sets a limit (or better say an important restrictions) on what can be achieved with

conventional diffraction imaging. For example, interpreting images of objects that have the size smaller

than

D < L
G

k
= L

λ

a
requires taking into account the fact that the direction of propagation of diffracted beams depends on the

reciprocal lattice vector associated with the beam. Here D is the size of the object, L is the thickness of

the crystal, λ is the wavelength of electrons (λ = 0.037Å for 100 keV electrons) and a is the distance

between atomic planes. For L = 500 Å; and a = 2.5 Å we find that D < 7.5 Å. The effect of non-

parallel propagation of diffracted beams is taken into account by using the many-beam Howie-Basinski

equations

i
h̄2

m
[k+G]·∇ΦG(r) =

h̄2

2m
[(k+G)2−k2]ΦG(r)− h̄2

m
[k+G]·∇[G·R(r)]ΦG(r)+

∑

G′
VG−G′ΦG′(r).

These equations were derived by A. Howie and Z. S. Basinski in Philosophical Magazine 17 (1968) 1039.
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Numerical Implementation

g 2 3

k

n

k+

n

ng

Ewald sphere

sg

g

g gg

x

z

θ

∆z
W

Figure 11: Schematic diagram illustrating the geometry of diffraction conditions. The vertical broken line

represents the zone axis, g is a reciprocal lattice vector and k is the wave vector of the

incident beam of electrons. The geometry of diffraction illustrated in this figure corresponds

to a weak-beam condition typically used in electron microscope imaging where the sphere of

constant energy does not pass through a reciprocal lattice point.
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Numerical Implementation

The idea is to use the Howie-Whelan equations to propagate the diffracted beams along the zone axis,

and to take account of the inclined propagation by equating beam amplitudes entering a slice normal the

zone axis to linear combinations of beam amplitudes exiting adjacent cells in the previous slice.

Φ
(in)
g′ (ν, z) and Φ

(out)
g′ (ν, z + ∆z) are the amplitudes of the diffracted beam k + g′ entering and

exiting the ν ’th cell of the slice at z of thickness ∆z.

Within each slice there are rows of cells along the x-axis and ν increases along each row and from

one row to the next along the y-axis. θ′g denote the angle between the diffracted beam k + g′ and the

zone axis. The angle θ′g is in the (x, z) plane, and

tan θg′ =
(k + g′)x

(k + g′)z

≈ (k + g′)x

(k + g′ + s′g)z

. (1)

EURATOM/UKAEA Fusion Association, Culham, UK Page 26



Diffraction Imaging of Defects and Dislocations S. L. Dudarev

Numerical Implementation

In the column approximation the amplitude Φ
(out)
g′ (ν, z + ∆z) exiting the ν ’th cell of a given slice

equals the amplitude Φ
(in)
g′ (ν, z+∆z) entering the ν ’th cell of the next slice. For the inclined propagation

the amplitude entering the ν ’th cell of the next slice is set equal to a weighted average of the amplitudes

exiting the cell directly above and an adjacent cell:

Φ
(in)
g′ (ν, z +∆z) =

(
1− ∆z

W
tan θg′

)
Φ

(out)
g′ (ν, z +∆z)+

(
∆z

W
tan θg′

)
Φ

(out)
g′ (ν−1, z +∆z),

(2)

if θg′ is positive and

Φ
(in)
g′ (ν, z +∆z) =

(
1 +

∆z

W
tan θg′

)
Φ

(out)
g′ (ν, z +∆z)−

(
∆z

W
tan θg′

)
Φ

(out)
g′ (ν +1, z +∆z),

(3)

if θg′ is negative. W is the length of a cell along x.

This finite difference method is fully equivalent to the set of couple differential equations of dynamical

diffraction. Hence it provides a way of simulating images of defects for an arbitrary configuration of

displacements of atoms.
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Figure 12: Simulated dark-field images of a perfect dislocation loop with b = 1/2[011̄] under two-beam

dynamical conditions. The original images of Eyre et al. (1977) are shown above ((a) to (d))

and simulated images are shown below ((e)-(h)). (a) and (e) g = 200, g · b = 0; (b) and (f)

g = 111̄, g ·b = 1; (c) and (g) g = 11̄1, g ·b = 1; (d) and (h) g = 02̄2, g ·b = 2. Loop

diameter is ∼ 5 nm. Foil thickness and loop depth are set according to Eyre et al. (1977).

From Z. Zhou et al. Philos. Mag. (2006) in press
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Howie−Basinski

Many−beam

approximation

Experimental

Many−beam

column 

approximation

Two−beam

column

approximation

 −1     
g g g

 −1       −1      s =0.15 nm        s =0.21 nm        s =0.29 nm

Figure 13: Simulated and experimental weak-beam images of edge-on loops in copper. The electron en-

ergy is 100 keV, and the beam direction is close to [110]. The loop diameter in the simulated

images is 5 nm, foil thickness 60 nm, loop depth 30 nm and sg is the deviation parameter.
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(a) (b) (c)

(d) (e) (f)

Figure 14: Simulated weak-beam images of an edge-on loop of diameter 3 nm in copper for g = 002

at the [110] pole. Foil thickness t = 60 nm. Loops are located around the centre of the

foil. Weak-beam condition (a) & (d) (g, 4.0g), (b) & (e) (g, 5.0g), (c) & (f) (g, 6.0g); (a),

(b) & (c) eight beams (0g - 7g) approximation; (d), (e) & (f) two-beam approximation for

the same deviation parameters |sg|. The many-beam calculations show that undesirable

fine structure can occur if images are formed under dynamical diffraction conditions involving

strong interference between several reflections belonging to a systematic row.
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10nm 11nm 12nm 13nm 14nm

edge− on

inclined

Figure 15: Simulated weak-beam images of edge-on and inclined loops of diameter 3 nm. The images

from left to right are according to the depth of loops in the foil. Foil thickness is 60 nm and

g = 002.
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Figure 16: The image size measured from simulated and experimental images of dislocation loops under

different weak-beam conditions. (a) and (b) are size measurements from simulated images

for loops of diameter 3 nm and 2 nm separately. Note the fluctuations of the apparent image

size occurring on the 1nm scale. The effective size of a single interstitial defect is∼ 0.3nm.
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