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Steel vs cast iron

Iron with up to 2% carbon is a base material for steels. More than 2.06 % carbon in Fe leads to a

Steel 60Si2 formation of cast iron
Tempered steel annealed at 7000C
Electron microscopy x12000



Nanocomposite hard coating

-

(Ti-AIl)N alloys

* The new universal high-performance
coating (drilling, milling, etc.)

* Increasing Al content leads to very high
heat resistance, dry

high-speed machining,
and increased oxidation “¥
resistance By A
+ Spinodal decomposition [ &




Multiscale modeling
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- Grains
~1-10 mm Microstructure

- Phases

=~ 100 - 500 microns

Crpositionsatt=0s After 30 yearsat 700K

* High cycle fatigue

Yield strength Microstructure
) : - Phases
High cycle fatigue ~ 3-100 nanometers
* Low cycle fatigue -
» Thermal Growth Atoms

" Yield strength =~ 10-100 Angstroms

* Low cycle fatigue

Original idea for this figure * Thermal Growth

belongs to Chris Wolverton



GOAL.

The main aim of this lecture 1s not so much to
present the existing results of first-principles
calculations of phase equilibria 1n alloys or to
describe the available software for statistical
simulations, but to give a more general view of the
problem and to describe the used techniques with
a primary concern of their validity and accuracy.

We will learn the theory behind the simulations!



Phase diagrams

* A phase 1s defined as a homogeneous
region of matter, separated from
other homogeneous regions by phase
boundaries.

« The different phases will have
different physical and/or chemical
properties.

* Phase diagram 1s a graphical
representation of the loci of
thermodynamic variables when
equilibrium among the phases of a
system 1s established under a given
set of conditions, like temperature,
pressure, composition, and size scale.

* Departures from equilibrium will
occur in any real system.




Hume-Rothery rules (from T. B.
Massalski, “Structure of solid solutions”)

If difference between the atomic sizes
of the component elements forming an alloy
exceeds 15%, solid solubility should become
restricted

Formation of stable
intermediate compounds will restrict primary solid
solubility.

The extent of solid
solubility and the stability of certain intermediate
phases 1s determined by the electron
concentration.



The second Hume-Rothery

rule

co(T') ~ exp[-0, /(k;T)]
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Fig. 2. Schematic representation of the phase equilibrium
between Cu—X solid solution and a stoichiometric Cu,X,,
intermediate phase. Mixing energy of the solid solution as
a function of the solute concentration is shown by a
ddshed line. The formation energy of the Cu;X,, phase
(E &y, x,)- the impurity solution energy (EYT), and the
energy of the dissolution reaction (Qx) are indicated by
arrows. The lengths and the directions of the arrows rep-
resent the absolute values and the signs, respectively, of
the corresponding quantities.



Phase diagrams for Cu-Zn and Ag-Zn
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Miedema's model of alloy —
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Fig. 10 Test of (3.3) for the sign of the heat of formation of alloys, in solid binary
systems in which one metal is a transition or noble metal and the other a transition,
Fig.4 Formation of an alloy in the ‘macroscopic atom’ model. In a first step atomic noble, alkaline or alkaline-earth metal. Each binary system is charactertzed by i
cells are taken from the metals to form the H][O}' with jusl a small change in :illii})x‘ but values of A¢h and An}. — indicates that the binary system contains stable intermetallic
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the heat of formation of the alloy. Redrawn after Miedema and de Chitel.”
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Chemical Gibbs free energy

i G=E+PV-TS

Chemical potential

(%6
o anl T.P.n,,,

Gibbs-Duhem relation

X X, B
- SAT —VdP+) n,du, =0
1

E
F=-k.ThhZ 7 = exp| — —2
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Model:

Consider a complex solution phase
(Ax;”Dx(D” VX(VU )(Bx}(;) Ang)Ex;;) )(ng)ng) Vx(y3) )
based at a complex compound 4, B,C,,
We will represent any type of species as J (J=A, B, C),
their fractions at sublattice s as  x'”
and the stoichiometric coefficients for the sublattice (or

more correctly, the multiplicity of the sublattice in the 4, B,C_
phase) as n® (n® =k,[m).



Concentration, mixing entropy, and

and mixing enthalpy:

Zn(S) (s) :CJZVI(S)(I xl(/fz )
—k Zn(S)Zx(S) ln(x(s)

AH =H_ , — an(l xé‘;)c

mix solution
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Chemical Gibbs free energy

i G=E+PV-TS

Chemical potential

(%6
o anl T.P.n,,,

Gibbs-Duhem relation

X X, B
- SAT —VdP+) n,du, =0
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Kohn-Sham Hamiltonian

4 Hyo” (r ,R,R, R\ )=¢797(r ,R,R,,.R )

1 -
H,, = —Evz +Va[n(r ,R,,R,,..R )]

Ve n(r ,R,R,,.R I =V,[n]+Von]l+Velnl+V,,,

*
. n(r ,R,R,,..R\\)=> n(r ,R,R,,.R,\)=D > 47 ¢°

o occ

Generalized Ising Hamiltonian

1 1
Hoomi = 3 ZVP(Q) > o0+ 3 Zt:Vt(S) Y oo+ ...
P

4,JEP i,j,ket
(o) =]]o,
ief
" =(E, (0)(c))

E[n]=T+ j d*TV, (F)n(T) + j d%(f)[% j 23 1) 1+ E, +Ey [n,n' 1= V"0 (0) = E(0)
f

|—> —

A. V. Ruban and I. A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).



For a fixed alloy concentration, 1.e. in the canonical ensemble, the configurational
Hamiltonian is frequently written in terms of fluctuations of either spin- or concentration
variables, oc; = ¢; — ¢

Heomt = Z V Z dci0c; + = Z V; Z dc;dcider + - . .. (59)
1,JEP i,j,kEt
Here Vf(n) (f = p,t,...) are the interactions in the concentration-variable basis, which

are connected to the interactions in the spin-variable basis as V}n) = Q”Vf(n). If

the pair interactions f/p@) arc dominating in the system it is very convenient to use

a reciprocal-space representation of the ordering energy for a general analysis of the
ordering [103, 3, §]

conf — ZV | Ck |2 (60)

Here V (k) and ¢ are the Fourier transforms of ‘N/p(z) and dc;, respectively:

_ Z I};(Q) Z e—‘ikR, (61)
p

Rep

1 :
= Z Sc;e KR, (62)

[n the case of a binary A.B;_. alloy well-known Krivoglaz-Clapp-Moss formula

lex]? = ¢(1 — ¢)ou. ak) =[1+c¢(1-c)8V(K) "



Extrapolation vs interpolation

PE.A. Turchi et al. / Computer Coupling of Phase Diagrams and Thermochemistry 31 (2007) 4-27

anel, the “C;” refer to particular chemical configurations of the alloy.



Calculations of effective interatomic potentials

E(fcc) E(L1,)

E(L1,)

E, . = V_(O) +V_(”<c7>+ Z V(Z’S)<c7i0'j>...

If N, <N, then{V}arefoundby LSM: 3>
m

2

E(DO22)

= min




Direct cluster averaging method

A closer inspection of definition (45) for the ECI reveals that they can be rewritten i
a more transparent form, as suggested by Berera et al. [186, 187] in the so-called direct
cluster averaging (DCA) method. For instance, the ECI in the case of a binary A.B;_.
alloy is [186, 187]: VS(”) — <Emt(0)(1)in)(a)>

2% > v ({oy,09,...0.}) TI o (68)

01,02...0n=1,—1 Oi=1,n

Vs(n) —

here v ({o|,09,...0,}) are the n-body potentials of cluster s composed of A and
B atoms in the configuration {o;,09,...0,}, and the summation is over all possible

occupations of this cluster. It is determined as the total energy of the system averaged
over all the remaining conﬁgurations under given external and internal conditions:

v ({o1,09,...0,}) = ZE {o1,00,...0,}s;0). (69)

HereE({al,ag,.. "OTL}S
in the cluster s and ¢ in the rest of the system; z is the total number of configurations,

.0 }; 0) 18 the energy of a system having configuration {o, o9, .

hich in the case of concentration-independent ECI determined on the N-site system ig

2N=" A similar expressions can be written for multicomponent systems [188]. However,
it is clear, that it is practically impossible to use Eq. (69) in first-principles calculations

ithout either sever restrictions on the size of the system or indroducing additiona
approximations. Berera et al. [186, 187], for instance, used a real-space tight-binding
formalism in order to calculate the ECI by the DCA.



Gereralired Perturbation /Method (6PM)
Eq Fa

CPA edfective mduj cpA eldective madiun,

Rg %Vf’“: 5| gz
| v/ie

A-evén
En-m{{
Andersen  The C’Ad'yc in enerqy between {wo sysiems

Jorce /s given fo thefirst approximmation by

'HDOOFPM ;  dhec /mrye /n one-electron Pﬂerj_y ond
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Heer [R) is Phe inderside Screening constant.
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Fig. 7.5. Typical variations of V,(N.,) for different values of ¢ and of é.

F. Ducastelle, Order and Phase Stability in Alloys
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The Monte Carlo method

E
ZAS exp| ———
S k,T
Calculations of averages at temperature T: <A> = 7
: : : 1 E
Create the Marcov chain of configurations: P =—exp| ——
Z k,T

Balance at the equilibrium state: W(s—s')exp| — =W(s'—> s)exp| — b
k,T k,T

r

.

ES

AE <0
AE >0 exp _AE >r (0<r<1)
k,T

B

e

Atoms exchanged

N

A4

J
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Monte-Carlo method: problems

Finite size of the samples (in general, phase transition can
only be defined 1n the limit N—o0)

“Kinetics” of the MC simulations: very large number of
spin flips may be necessary to reach equilibrium state

Close to a second-order phase transition the time necessary
to reach equilibrium 1s expected to tend to infinity

There 1s a possibility that the system evolves towards
metastable states. It 1s difficult to escape from the
metastable states, especially at low T.

Hysteresis effects in the case of first-order transitions
MC simulations are difficult in cases of frustrated systems



Example: ordered phases in Cu,NiZn

21 concentration and volume
dependent effective cluster
Interactions

Electronic structure
calculations using O(N) LSGF
method

32 different atomic
distributions at fixed
concentration (144 atom
supercell)

Cluster expansion represents
total energy calculations with
average accuracy better than
0.015 mRy, and with the
maximal error 0.2 mRy (or 4%
of the ordering energy)




T<T, T<T<T, TxT<T, T>T

m-L1, L1, L1, random

@ Zn @ zn @ (Zn,Cu) @® (Zn,Ni,Cu)
@ N ® Nicw @ (Ni,Cu)

@® Cu

Concentrations

0
D
i
% . ] ) I
’g 0.0 — Maz, | I I _
O-05¢} Nan | | | |

S I S 1 A ] = '10 ' | ; l I l . || . | I | .

(5. 1. Stmak ef al., 100 300 500 700 900 1100 1300 1500

Phys. Rev. Lett.
81, 188 (1998))




Magnetism and chemical interctions

Let us start from short times ~ 107! sec (but long enough for d-electron-hoping
(~ 107" sec)). The effective pair interactions at such time scale can be defined as the
energy of the exchange of atom A in one magnetic state, say A" with an atom B in the
presence of another atom A, say A? at some specific lattice vector R:

VAuAd_B(R) — ’()AuAd(R) + UBB(R) — UA“B(R) — UBAd(R)? (78)

where v45(R) is the interatomic potential between A and B atoms. There are in general
three different effective interactions of such type in this case: yA A*-B (or equivalently
yAAT=BY Y ATAY=B and VAA=B_ On a longer time scale they will be averaged out, one

therefore gets only one effective pair interaction of an effective binary alloy <A>.B;_.:

VPIM(R) = V<4>B(R) = % VAATBR) + VAR, (79)

where we have used the fact that VA“4“=8 = A’A’=B i) the DLM state.



= _ZJijSiSj VM (R =V™(R)+2J *(R)

I, ]#I

Exchange parameters

Pair exchange parameter

J;>0 TT

o | &

<0 Td

Eftective exchange parameter

& Jﬂ:ZJﬂj

j=0




Fe-Si system:

At ambient pressure the phase

diagram of Fe-Si system 1s complicated with different
intermediate phases present.

Moroni et al. (Phys. Rev. B 59, 12860-12871, 1999) predicted
the B20 to B2 structural transformation in FeSi at relatively low
pressure.

Fe;S1 phase 1n the DO3 structure is stabilized by the
ferromagnetic order.

J.-F. Lin et al., Iron-silicon alloy 1n Earth’s core? Science 295,
313-315 (2002).

L. Dubrovinsky et al., "Iron-silica interaction at extreme

conditions and the electrically conducting layer at the base of
Earth's mantle", Nature 422, 58 (2003)



1700 it e s L s L

1500 -

QL 1410 1414 |

. —
. o~
.

1300 1m0

\ T deso S0
\ e 212 /7 1503 1212 == 1207

et

L

= o
1100 |LL [/ Ay | 0 T | =
1~ I/ \N || 1060 ol -

o ]

W e

Temperature, °C 4|u‘

} / f Y |
I!I | ||'I- II,.l- / 1 []';I' ﬂ - g 8 2 | ] I|
i / \/ 965 L \
// pe ™ \ 937
14 I,n' i / )
900 912 [/ | W =
] e L
| 825 +
: t II _:'I Lﬁ .II ) L\' :
- :" ?u ‘ E‘\ |I. I."lr qr:? I| E.E % a): L
- | w | (I L —

700

500

20 30 40 50 60 70 80 90 100

Fe at. % Si



=
£
-
e
e
[
=

0.4 0.6
Fe concentration (on 51 subl.), at.%




%y

_IIII!III! EE:E:‘!M “1:
0.2 — —- Bl i
- D03 -
0.4 — ==
B 5 D, 0 P 15 1k DI v i 0 o P o 11-}-[}
0.6 — =
B (1) =
0.8 — s
_L['I|:r||||||||i|:||r::|||:|
0 1000 2000

IIiIlII1F|II1FIII|FIIF1I

IIIl|I1lI|I1tI|I1rI|IIII

0 1000 2000

0 1000

2000

0.3 It]ll!!!lli!lltitlll!lll

-]
i

=R ) 1 o8
-0.40 — e
o 0 o O o I*f-&-:I'-":*l-H} 0.6l]
-0.60 — —
0.80 — | 04
'Lm-IlitlllitllHtIIHEIIHI- 0.2
0 1000 2000 0 1000 2000
RRRERRERY RRRRERRERE RRAN 0.5 YEAAT
T (T) &l
0.4 — — ﬂﬂ’é-
e e L e D
0.6 ._' ": l}.3L'
0.8 — —
-1.0 _Illt!ll!tlll!tllt!!lltil_ 0.2 AETERIETENTESRNRETANNET
0 1000 2000 0 1000 2000

Temperature, K

0 1000

2000



Monte-Carlo simulations.: results

T=0K
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The Monte Carlo method and the thermodynamic integration

- ES
Calculations of averages at temperature T: ZAS exp(— I Tj
(4)== -

YA

3

(AE<0
AE >0 exp _AE >r (0<r<l)
k,T

B

1

Atoms exchanged

Vo

\ J

One can therefore calculate <E>, heat capasity C,,, and use thermodynamics:

)
S(T,)=S(T))+ j%dT; C,=C, +BVIa®> where B is bulk modulus and a is

h thermal expansion coefficient

Gibbs-Helmholtz relation: [M) —F
ol/T ),
ﬂ 1
Sconf(T) = ASia’eal +E(T)/T_kBJE(IB)dIB, IB = k T
0 B



Thermodynamic integration
1) Let UR,, . .. Ry) be the first-principles total energy of the system in which the N nuclei are
fixed at positions R, . . . Ry

2). Define continuously variable energy function U(4) such that for A=0 U(0) allows one to calculate
F easily, and for A=1 U(1)=U, the potential energy for the system of interest . For instance,

Uy = (1 — f(A)Us + f(A)U, where f(A) 1is an arbitrary continuous and differentiable function of A
with the property f{0)=0 and f(1)=1.
Fy = —kgTln {ﬁ [ dR,; ...dRy e U (R, RyiT) } . where A is the thermal wavelength of the nuclei.

3). Differentiating this with respect to A gives:

dFy _ kg Tw-—x*‘fft dR; ...dRye PUrRi-RyiT)(_ g0 _<3L"A> o
dX mft__m]___mhﬁ—nun Rn:T) —\ a\ '

} < s >
AF =F —Fy= [d\ {52 ) .
0 2 NN

A simple way of defining U(4) is: Uy = (1= XUy + AU. &

1
AF = [d\ (U — Up),
0



METADYNAMICS [A. Laio and M. Parrinello, PNAS 99, 12562 (2002)]

1). Assume that that there exists a finite (small) number of relevant collective coordinates s; and
considered the dependence of the free energy F(s) on these parameters.
¢t
I

¢,

where scaled variables are O'l.t = Sl.t / As; and ¢l_t = (—GF (s) / 6S;)ASZ. are the scaled forces.
3). Replace the forces with a history dependent term by adding a Gaussian at every point ¢’
already visited in order to discourage the system to visit it again:

2). The dynamics was defined from the discretized evolution equation: O Z.HI =0 l.t + o0

2 2y

4). The height W and the width 66 of the Gaussian
have to be chosen to provide a reasonable 6
compromise between accuracy and efficiency.

5). Explore the free-energy landscape!

X

Fig. 1. Time evolution of the sum of a one-dimensional model potential V(o)
and the accumulating Gaussian terms of Eq. 2. The dynamic evolution (thin
lines) is labeled by the number of dynamical iterations (Eq. 1). The starting
potential (thick line) has three minima and the dynamics is initiated in the

cacond minimum.



Example: a search for the MgSiO, post-perovskite phase
(A. R. Oganov et al., Nature 438, 1142 (2005).

Ab initio simulations based on the GGA
and using PAW-VASP

The time step for MD was set to 1 fs.

In ab initio calculations 0.7 ps was used

for equilibration and 0.3 ps for pressure
tensor calculations.

Simulated conditions:150 GPa, 1,500 K.

The supercells used in our calculations
contained 160 atoms

Figure 1 | MgSiO; polytypes found by metadynamics. a, Pv (space group
Pbnm); d, pPv (Cmcm); b, ¢, newly found structures 2 X 2 (Pbnm) and 3 X 1
(P2,/m), respectively. Only silicate octahedra are shown; Mg atoms are
omitted for clarity. In the pPv structure, the previously expected slip plane is
parallel to the sheets formed by silicate octahedra; the most likely slip plane
identified here is shown by an arrow. Arrows also show slip planes in the
other structures.



GENETIC OR EVOLUTIONARY ALGORITHM

1). Produce the first population “parents” of structures randomly. Screen off a priory impossible
structures by using some hard constrains (the minimum acceptable interatomic distances, the minimum
value of the lattice parameter, and the minimum and maximum cell angles, etc.). Carry out local
optimization of the crystal structures for the “parents”. Calculate fittness.

3). Based on the fitness ranking, reject a certain number of the worst structures among the locally
optimized ones. The remaining "parents" participate in creating the next generation

4). Create common shapes via similarity transformation:
S;=A'R,, where S, are the so-called fractional coordinates,
R, Cartesian coordinates, and A the 3 X 3 matrix of the
lattice vectors.

PHYSICAL REVIEW B 73, 224104 (2006)

4). Mate 1n real space using the periodic cuts.

5). Mutations may consist of swaps between
different atoms in the cells, as well as of random changes
of cell vectors and atomic positions.

6). Screen the "offsprings" by using the same hard
constrains as for the "parents", and optimize their structures.

. FIG. 2. Real-space representation of the periodic cuts in the

7) The new pOOl Of "pal’ents" 1S nOw Created. crossover operation. Different wavelengths and amplitudes can be

used for the cuts along the different cell directions. The cuts are

. . calculated in fractional coordinates which allows crossover between

8) Repeat the whole procedure until some haltlng parents with different cells. The dark gray sections represent one

criterion is met. ?art of th(-.: cell, th light gray the other, and it is these parts that are
swapped in crossover.



Contents:

Phase stability: general consideration and
phenomenological approaches.

Empirical models (Miedema’s empirical model for
enthalpies of formation, Pettifor structural map, Hume-
Rothery rules).

Calculations of phase diagrams. Thermodynamic approach.
From thermodynamics towards statistical mechanics.

The cluster expansion method

The Monte-Carlo method

The global structure optimization problem
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