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Steel vs
 

cast iron

Iron with up to 2% carbon is a base material for steels.
Steel 60Si2

Tempered steel annealed at 700oC
Electron microscopy х12000.

More than  2.06 % carbon in Fe leads to a 
formation of cast iron



Nanocomposite
 

hard coating 
(Ti-Al)N

 
alloys  

•
 

The new universal high-performance 
coating (drilling, milling, etc.)

•
 

Increasing Al content leads to very high 
heat resistance, dry
high-speed machining,
and increased oxidation
resistance

•
 

Spinodal
 

decomposition

20 nm



Multiscale modeling

Engine Block
 1 meter

Microstructure 
- Grains
 1 – 10 mm
Properties
•

 

High cycle fatigue
•

 

Ductility

Microstructure 
- Phases
 100 – 500 microns
Properties
•

 

Yield strength
•

 

Ultimate tensile strength
•

 

High cycle fatigue
•

 

Low cycle fatigue
• Thermal Growth
•

 

Ductility

Microstructure 
- Phases
 3-100 nanometers
Properties
•

 

Yield strength
•

 

Ultimate tensile strength
•

 

Low cycle fatigue
•

 

DuctilityOriginal idea for this figure 
belongs to Chris Wolverton

 
Ford Motor Company

Atoms
 10-100 Angstroms
Properties
•

 

Thermal Growth



GOAL:

The main aim of this lecture is not so much to 
present the existing results of first-principles 
calculations of phase equilibria

 
in alloys or to 

describe the available software for statistical 
simulations, but to give a more general view of the 
problem and to describe the used techniques with 
a primary concern of their validity and accuracy.

We will learn the theory behind the simulations!



Phase diagrams
•

 
A phase is defined as a homogeneous 
region of matter, separated from 
other homogeneous regions by phase 
boundaries. 

•
 

The different phases will have 
different physical and/or chemical 
properties.

•
 

Phase diagram is a graphical 
representation of the loci of 
thermodynamic variables when 
equilibrium among the phases of a 
system is established under a given 
set of conditions, like temperature, 
pressure, composition, and size scale.

•
 

Departures from equilibrium will 
occur in any real system.



Hume-Rothery
 

rules (from T. B. 
Massalski, “Structure of solid solutions”)

•
 

15% rule.
 

If difference between the atomic sizes 
of the component elements forming an alloy 
exceeds 15%, solid solubility should become 
restricted

•
 

The electrochemical effect.
 

Formation of stable 
intermediate compounds will restrict primary solid 
solubility.

•
 

The relative valence effect.
 

The extent of solid 
solubility and the stability of certain intermediate 
phases is determined by the electron 
concentration. 



The second
 

Hume-Rothery
 rule
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Phase diagrams for Cu-Zn and Ag-Zn

Cu-Zn 
Ag-Zn
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Model:

Consider a complex solution phase

based at a complex compound 
We will represent any type of species as J (J=A, B, C ),
their fractions at sublattice

 
s

 
as 

and the stoichiometric
 

coefficients for the sublattice
 

(or 
more correctly, the multiplicity of the sublattice

 
in the

phase) as n(s) (n(s) = k,l,m).
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Concentration, mixing entropy, and 
and

 
mixing enthalpy:
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Kohn-Sham Hamiltonian
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A. V. Ruban and I. A. Abrikosov, Rep. Prog. Phys. 71, 046501 (2008).





Extrapolation vs
 

interpolation



Calculations of effective interatomic potentials

The Connolly-Williams method

1. Select structures fcc L12 L10 DO22

2.  Calculate Etot :                E(fcc)        E(L12 )        E(L10 )      E(DO22)
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correlation functions  ,...  ,  ,
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Direct cluster averaging method
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P. Olsson, I. A. Abrikosov, L. Vitos, and J. Wallenius, J. Nucl. Mater. 321, 84 (2003)
P. Olsson, I. A. Abrikosov, and J. Wallenius, Phys. Rev. B 73, 104416 (2006) 



F. Ducastelle, Order and Phase Stability in Alloys



Ab initio, this work. 





The Monte Carlo method

Calculations of averages at temperature T:
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Monte-Carlo method: problems

•
 

Finite size of the samples (in general, phase transition can 
only be defined in the limit N→∞)

•
 

“Kinetics”
 

of the MC simulations: very large number of 
spin flips may be necessary to reach equilibrium state

•
 

Close to a second-order phase transition the time necessary 
to reach equilibrium is expected to tend to infinity

•
 

There is a possibility that the system evolves towards 
metastable

 
states. It is difficult to escape from the 

metastable
 

states, especially at low T.
•

 
Hysteresis effects in the case of first-order transitions

•
 

MC simulations are difficult in cases of frustrated systems 



Example: ordered phases in Cu2 NiZn

•
 

21 concentration and volume 
dependent effective cluster 
interactions

•
 

Electronic structure 
calculations using O(N) LSGF 
method

•
 

32 different atomic 
distributions at fixed 
concentration (144 atom 
supercell)

•
 

Cluster expansion represents 
total energy calculations with 
average accuracy better than 
0.015 mRy, and with the 
maximal error 0.2 mRy (or 4% 
of the ordering energy)



(S. I. Simak

 

et al., 
Phys. Rev. Lett. 
81, 188 (1998))



Magnetism and chemical interctions
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Fe-Si system: 

•
 
At ambient pressure the phase 
diagram of Fe-Si system is complicated with different 
intermediate phases present.

•
 
Moroni

 
et al. (Phys. Rev. B 59, 12860–12871, 1999) predicted 

the B20
 

to B2
 

structural transformation in FeSi
 

at relatively low 
pressure.

•
 
Fe3

 

Si phase in the DO3 structure is stabilized by the 
ferromagnetic order.

•
 
J.-F. Lin et al.,

 
Iron-silicon alloy in Earth’s core? Science

 
295, 

313-315 (2002).
•

 
L. Dubrovinsky

 
et al., "Iron-silica interaction at extreme 

conditions and the electrically conducting layer at the base of 
Earth's mantle", Nature 422, 58 (2003) 









Monte-Carlo simulations: results

T=0K T=2500 K

DLMFM





Fixed underlying lattice (bcc)
Different 
underlying 
lattices



The Monte Carlo method
 

and the thermodynamic
 

integration  

Calculations of averages at temperature T:
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Thermodynamic integration 

2). Define continuously variable energy function U(λ) such that for λ=0 U(0) allows

 

one

 

to calculate
F

 

easily, and for λ=1 U(1)=U, the potential energy

 

for the system of interest

 

. For instance,
where           is an arbitrary continuous and differentiable function of λ

with the property f(0)=0 and f(1)=1. 

where Λ

 

is the thermal wavelength of the nuclei.

1)

 

Let U(R1

 

, . . . RN

 

) be the first-principles total energy of the system in which the N nuclei are 
fixed at positions R1

 

, . . . RN

 

.

3). Differentiating this with respect to λ

 

gives:



A simple way of defining U(λ) is: 



METADYNAMICS [A. Laio

 

and M. Parrinello, PNAS 99, 12562 (2002)]

1). Assume that that there exists a finite (small) number of relevant collective coordinates si

 

and 
considered the dependence of the free energy F(s)

 

on these parameters.

2). The dynamics was defined from the discretized

 

evolution equation:

where scaled variables are                           and        are the scaled forces.
3). Replace the forces with a history dependent term by adding a

 

Gaussian at every point σt’

already visited in order to discourage the system to visit it again:
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4). The height W and the width δσ

 

of the Gaussian 
have to be chosen to provide a reasonable 
compromise between accuracy and efficiency.

5). Explore the free-energy landscape! 



Example: a search for the MgSiO3 post-perovskite phase 
(A. R. Oganov

 
et al., Nature 438, 1142 (2005).

Ab

 

initio simulations based on the GGA 
and using PAW-VASP

The time step for MD was set to 1 fs.

In ab

 

initio

 

calculations 0.7 ps

 

was used 
for equilibration and 0.3 ps

 

for pressure 
tensor calculations.

Simulated conditions:150 GPa, 1,500 K.

The supercells

 

used in our calculations 
contained 160 atoms



GENETIC OR EVOLUTIONARY ALGORITHM
1). Produce the first population “parents”

 

of structures randomly. Screen off a priory

 

impossible 
structures by using some hard constrains (the minimum acceptable

 

interatomic

 

distances, the minimum 
value of the lattice parameter, and the minimum and maximum cell

 

angles, etc.). Carry out local 
optimization of the crystal structures for the “parents”.

 

Calculate

 

fittness. 

3). Based on the fitness ranking, reject a certain number of the worst structures among the locally 
optimized ones. The remaining "parents" participate in creating the next generation 

4). Create

 

common

 

shapes

 

via similarity

 

transformation: 
SI =A-1RI , where

 

SI are the so-called

 

fractional

 

coordinates, 
RI Cartesian coordinates, and A the 3 X 3 matrix of the 
lattice vectors. 

4). Mate in real space using the periodic cuts. 

5). Mutations may consist of swaps between 
different atoms in the cells, as well as of random changes 
of cell vectors and atomic positions. 

6). Screen the "offsprings" by using the same hard 
constrains as for the "parents", and optimize their structures.

7). The new pool of "parents" is now created.  

8). Repeat the whole procedure until some halting 
criterion is met.
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