

Advanced Post-Irradiation Examination Methods

Jean-Yves Blanc

(with the collaboration of J. Thomazet for AREVA-NP documents)

- Fuel R&D => Surveillance programme
 - Cladding
 - Fuel
- RPV Irradiation surveillance programme
- Material development (GenIV, ODS, SiC, fusion,..)
- Reprocessing R&D Chemistry
- Radioisotope production

What is an irradiation surveillance programme?

Task sharing, fuel manufacturing, irradiation

On-site examinations

"Classical" hot cell Post-Irradiation Examinations (PIE)

- Non destructive PIE
- Metallography,
- H₂ measurement in the cladding
- Mechanical testing

Providing fuel to other programmes "Specific" hot cell examinations

=> An example of results = Cladding development

Surveillance programme

- Irradiation of new fuels is investigated on a limited number of special or lead assemblies or even limited to a few rods inside standard assemblies
- To limit costs and risks
- ⇒ Used for testing:
 - New types of alloys.
 - New assembly designs.
 - Higher burn-ups,
 - MOX, Reprocessed Uranium fuels.
 - Fuel plant management (load follow, water chemistry).
 - Fuel cladding interaction solutions (ex. doped UO₂),
 - etc...

- X1 2nd phase Corrosion: 4 ass. AFA 17x17.
 - Initial ²³⁵U enrichment = 4.5%, to reach 5 or even 6 cycles.
 - 16 "atypical" rods per assembly,
 - 8 types of claddings:
 - massive or duplex.
 - 4 types of Zr alloys (with various Sn, V and Nb contents).
- 6th and 7th cycles with M5 cladding (Zr-1%Nb):
 - 2 x 4 fuel rods, irradiated 5 cycles.
 - Inserted inside two 3-cycles assemblies
 - Re-irradiated 1 year → 6 cycles.
 - Re-irradiated 2 years → 7 cycles.

Example of lead assembly Vue de dessus

ace 3

Détrompeur Face 4 EDCBA 5 6 4 9 Face 1 5 10 12 3 5 Face 2 - 5 types of M5pc 2 D2pc D2pl recristal clads Zy4pc D2pl

pl: long pellets

pc: short pellets

D5pl

- 2 types of pellets

Fuel characterization:

- Fuel rods and lead assemblies manufactured for surveillance programmes are specially characterised (to have a better comparison with PIE results):
 - Pellets, claddings, fuel rods
 - Assemblies.

Irradiation:

- An irradiation report giving irradiation data is necessary for the hot cell PIE.
- For power ramping tests, power history is provided for a fuel segment (stage).

On-site examinations. Several tools are available:

- Visual and dimensional remote control of the assembly with "Diva" tool (PADEC),
- ZrO₂ thickness on peripheral rods.
- ZrO₂ thickness on internal and peripheral rods "Sabre" ("Sword"),
- Diameter with "DICCO" tool,
- Extraction forces measurements,

For hot cell examination

- Extraction of some chosen rods,
- Insertion of new rods (less enriched).
- Transport using R62 cask, soon R72 (EDF/Robatel) or BG18 (Transnubel).

Transportation:

BG 18 (photo Transnubel)

R72 (EDF slide)

"MEDOC" tool from AREVA-NP: oxide thickness measurement on extracted fuel rods.

(Areva doc):

Continuous oxide measurement on extracted rods

"SABRE" ("Sword")
tool from ArevaNP: oxide
thickness
measurement on
internal fuel rods
(Areva doc.)

"SABRE" tool from Areva-NP (doc. Areva): example of 3D oxide thickness measurements presentation on a PWR fuel rod assembly.

M5 fuel rod elongation is smaller than stress-relieved Zy-4 & has a slower increase at high fluence.

Rod elongation, in %

Hot cells:

œ

1) Non destructive PIE:

- -Visual examination,
- -Length measurement,
- -Diameter on 4 generatrices,
- -ZrO₂ thickness (by eddy currents punctual probe), 8 generatrices,
- -Cladding integrity (by eddy currents circling probe),

-X-rays radiography.

-Gamma spectrometry,

Couns/s maxi = 2554

J.Y. Blanc, ICTP-IAEA Workshop, November 2008

Visual examination in hot cell:

6- cycle UO₂ fuel rod, Zy4, 64481 MWdtU, spalling at span 6

J.Y. Blanc, ICTP-IAEA Workshop, November 2008

Zirconia thickness in hot cell:

Zirconia thickness in hot cell:

On a MOX fuel rod, irradiated 4 cycles, low-tin Zy4 cladding

Zircone STAR 12/05/2004 Assemblage FXP0NA Crayon C05

Zirconia thickness in hot cell:

UO₂ fuel rod, **Zy4 clad 1.3% Sn**, 6 cycles, 65 GWd/tU

Zirconia thickness in hot cell: M5 alloy cladding, 6 cycles, 67 MWd/tU mean rod value

Hot cells:

2) Destructive PIE:

Puncturing: fission gas release (F%), free volume determination, end-of-life pressure, fission gas analyses (by mass spectrometry de masse or GPC),

Cutting.

Metallography.

H₂ content in the cladding.

Fuel density.

Metallography in hot cell:

Metallographic preparation

Metallography:
Hydride
distribution in a
5 cycles **Zy4**cladding

