

Metallography: Hydride distribution in a spalling area, 5 cycles **Zy4**

Metallography: Hydride distribution in a spalling area 6 cycles **Zy4**

Metallography: Hydride distribution in a spalling area 6 cycles **Zy4**

Metallography: hydrides on a 6cycle **M5 clad**

Azimuth 270° Homogeneous distribution through the wall. No hydride accumulation at metal oxide interface (as in high burn up Zy4)

Span 6, 72,6 GWd/tU

200 µm Few radial hydrides Azimuth 90°

Circumferential hydrides

Before etching

Metallography:

Hydrides on a duplex **7.1** clad (Zr,Sn,Fe,Cr,O alloy outer layer on Zy4) 5 cycles 53 GWd/tU

After etching

100 µm

Hot cells:

3) Mechanical properties :

After chemical dissolution of the fuel pellets, claddings are submitted to standard tests, such as:

- Tensile testing at 350°C, 3.10⁻⁴ s⁻¹
- Burst testing at 350°C, 3.10⁻⁴ s⁻¹
- Creep testing 400°C, 130 MPa, 240 h

=> Performing the same tests on different materials (alloy, burn-up, span level) enables to compare performances.

Mechanical testing machines for irradiated materials

Diametric creep for M5[®] fuel rods is much smaller than for stressrelieved Zy4 rods with identical internal pre-pressurization and stay lower even with pre-pressurizations two times lower.

Providing fuel samples to other programmes :

Surveillance programmes are the usual mean to provide irradiated fuel for special tests:

- Specific mechanical properties,
- Power ramps (short rod manufacturing),
- RIA tests and support programmes (ex.: ring tests),
- Studies on failed rods, SCC,
- Instrumented in-pile tests, analytical tests on fission gas release (ex.: Verdon).
- Dissolution process for irradiated fuel treatment (ex. High burn up MOX), validation of neutronics codes (reprocessed U)
- Studies on long term storage,

• . .

Non standard hot cell examinations:

- Burn up determination (¹⁴⁸Nd) & isotopic values
- (U, Pu, Nd, Am, Cm) by mass spectrometry,
- Specific mechanical tests: ring testing, dynamic tensile testing, fatigue,..
- Non-destructive measurement of the internal pressure by 85Kr,
- X-ray diffractometry (ex. O/M on MOX).
- Electron Probe Micro Analyses.
- SEM: examination of fracture
- surfaces after ramp testing,
- SIMS.
- Etc..

Example of detailed analyses: measurement of hydrogen content by ERDA (Elastic Recoil Depth Analysis) at LPS, Saclay.

Hydrogen in the clad can be distinguished from hydrogen in the zirconia layer, here on a 5-cycle irradiated cladding.

Line 0 sample Q1 (opposite to fracture)

Surveillance programme results: an illustration.

œ

Depending on power plant operations, surveillance programme conditions are more or less detrimental.

Plant	Core power (MWt)	Inlet T° (°C)	Outlet T° (°C)	Linear power (W/cm)
PWR 900 17x17	2775	287,7	321,5	178,3
PWR 1300 17x17	3800	289,9	323,1	170,2
PWR 400 14x14	1192	285,2	314,0	219,8
Pre-Convoy 16x16	3850	291,8	326,5	211,1
Convoy 18x18	3850	291,7	325,4	166,1

Summary of corrosion results

œ

	900 MWe PWR		1300 MWe PWR		GERMAN PLANTS		400 MWe PLANT	
Alloy	B.U. in GWd/tU	Oxide thickness (µm)	B.U. in GWj/tU	Oxide thickness (µm)	B.U. en GWd/tU	Oxide thickness (µm)	B.U. en GWd/tU	Oxide thickness (µm)
AFA 2G	65	124	60	123	48	112	53	63
2	60	47	-	-	47	40	53	26
4	63	40	60	45	51	49	-	-
M5™	80	31	60	27	59	41	53	20

(data Areva-NP)

Corrosion of ZIRCALOY-4 AFA2G in commercial power plants

J.Y. Blanc, ICTP-IAEA Workshop, November 2008

The DUO experiment.

- 4 characterised assemblies were loaded:
 - in GOL-1 (Li < 2,2 ppm),
 - in CAT-2 (Li < 3,5 ppm).

These assemblies included Zircaloy-4 AFA2G, M5, et M4 alloys issued from the same clad batches (and a few rods in advanced cladding materials M5+ and Zy4+ in CAT-2).

- Corrosion measurements were performed by Areva-NP after each irradiation cycle.

- 5 cycles of irradiation were obtained for 5 rods in Cattenom 2 (maximum burn-up = 69 GWd/tU). PIE are nearly completed.

- As power histories were different, comparison is only possible at the same burn up..

- No corrosion acceleration was detected on the 3 alloys under study.
- Good behaviour of alloys + and M5.

Conclusions:

Surveillance programmes are necessary to validate the design of new fuels (new claddings, MOX, higher burn up,...).

Post Irradiation Examinations in hot cells are a lengthy and costly process. Trends are as follows:

 No more examinations on a whole assembly, but only on a few carefully selected rods,

- Augmentation of on-site examinations,

- Limit the number of extracted and examined rods,

 PIE are indispensable for providing raw data to fuel designers and provide samples to other programmes,

- Indispensable for specific examinations : clad mechanical properties, H_2 content, metallographies, surface analyses, fuel burn up determination, pellet structure,...

 Also interesting for expertises, wear traces, irradiated grids or guide tubes...

Thanks for your attention.