

1

In-Pile Research

Instrumentation and Methods

Lecture 8.4

Wolfgang Wiesenack

OECD Halden Reactor Project, Norway

Joint ICTP-IAEA Workshop on

The Training in Basic Radiation Materials Science and its Application to Radiation Effects Studies and Development of Advanced Radiation-Resistant Materials

Trieste, November 10-21, 2008

Overview

- Why make in-pile measurements on fuel rods?
- What can be measured?
 - temperature
 - pressure
 - dimensional changes
 - secondary measurements

Why make in-pile measurements on fuel rods?

In-core instrumentation is essential for fuel performance studies and provides

- direct insight into phenomena while they are going on
- cross-correlations between interrelated phenomena

However, the conditions in the core of a (research) reactor are not conducive for instrument performance and the ability to survive for a long time. Factors contributing to failure are

- high neutron and gamma fluxes
- high temperatures
- high pressures

Temperatures, pressures, stresses, strains, dimensional changes, electrochemical potential and other important parameters can be measured in various ways, **but**:

Only robust methods will endure in-core conditions for longer times.

What can be measured on a fuel rod and to what fuel performance issue does the measurement relate?

1. Fuel Temperature

Heat transfer (fuel thermal conductivity, gap

conductance)

- 2. Rod Internal Pressure Change
- 3. Fuel Stack Length Change
- 4. Fuel Cladding Length Change growth)
- 5. Fuel Rod Outer Diameter Change creep

Fission gas release, fuel densification & swelling

Fuel densification & swelling

PCMI, (or when no PCMI, surface heat transfer,

PCMI, (or when no PCMI, & growth, corrosion)

1. Fuel Temperature

- A good prediction of fuel temperature is an essential requirement for any fuel performance code
- Fuel centreline temperature at a single point within an annular fuel pellet can be measured with a thermocouple
- Average fuel centreline temperature can be measured with an expansion thermometer running the length of an annular fuel stack
- Fuel centreline temperature measurements enable modellers to test their code predictions with respect to:
 - Fuel thermal conductivity and its degradation with burn-up
 - Gap conductance / gas composition (fission gas release)
 - Gap width (fuel densification & swelling, cladding creep)
 - Fuel pellet surface roughness
 - Eccentricity in the fuel stack

Measuring Fuel Temperature with a Thermocouple

- High temperature thermocouples suitable for measuring inside a fuel stack are:
 - W / Re
 - Nicrosil / Nisil
- Strengths of thermocouples
 - Reliable measurement: up to 1400 1600°C, thermocouples can last several years and will even manage a few hours at 2000°C
 - Accurate measurement: easy to calculate from measured to solid fuel pellet temperature
- Weaknesses of thermocouples
 - Tendency to premature failure at high fuel temperatures or in failed rods
 - Need to account for de-calibration due to transmutation at high fluence

Measuring Fuel Temperature with a Thermocouple

- Both fresh and irradiated fuel pellets in a stack can be drilled to allow insertion of a thermocouple (Mo tube)
- Neutron radiography can show exactly where thermocouple tip (hot junction) is positioned

Measuring Fuel Temperature with an Expansion Thermometer

- A thin tungsten rod is inserted through a centre hole drilled in the entire fuel stack
- One end of W-rod fixed to fuel rod end-plug, other end is free and fitted with a magnetic core, movement of core sensed by an LVDT (Linear Variable Differential Transformer)
- Average centreline temperature in fuel stack derived from measured axial expansion of tungsten rod

Linear Variable Differential Transformer (LVDT)

- Developed for measuring fuel rod pressure, temperature, fuel stack and cladding elongation
- Primary coil with two secondary coils connected in opposition. Movable magnetic core concentrically located inside coil system
- Core movement affects the balance of the secondary coils and generates the signal output

- a: Test rod end plug assembly
- b: Primary coil
- c: Secondary coils
- d: Ferritic core
- e: Twin-lead signal cables
- f: Body
- g: Housing

Measuring Fuel Temperature with an Expansion Thermometer

- Strengths of expansion thermocouples
 - Suitable alternative to thermocouples for high-temperature measurements
 - No de-calibration with time
 - Expected lifetime is longer than that of a thermocouple
- Weaknesses of expansion thermocouples
 - Accuracy of the measurement due to the interpretation of the signal that is needed is not as good as the accuracy of a thermocouple
 - There is also a risk that mechanical interaction between the fuel and the tungsten rod will affect the performance of the instrument

2. Fuel Rod Internal Pressure Change

- Measuring changes in rod internal pressure provides data on
 - Fission gas release
 - Fuel stack densification and swelling (in absence of FGR)
- Understanding or being able to adequately model fission gas release mechanisms is important especially for development of new fuel types for better fuel performance
 - Rod pressure measurements often combined with fuel temperature measurements e.g. investigating threshold temperature for FGR onset
- Fuel rod internal pressure is a key issue for extending the discharge burn-up of fuel for power reactors most licensing bodies limit allowable fuel rod internal pressure to not exceed system pressure

Measuring Fuel Rod Internal Pressure Change

- Small stainless steel or Inconel sealed bellows unit inserted in a fuel rod endplug
- Gas pressure in fuel rod acts on bellows
 - One end of bellows fixed to end-plug,
 other end is free and fitted with a
 magnetic core, movement of core
 sensed by an LVDT
 - In-pile calibration at start of life (know rod pressure), then subsequent signal gives change in rod pressure
- Different bellows used for different expected measuring ranges: up to 15, 30 or 70 bar ΔP

Measuring Fuel Rod Internal Pressure Change

- Bellows experience creep due to the high temperature, stress and radiation environment
 - Use pressurised bellows (to reduce stress)
 - Carry out "re-calibrations" with data obtained from periods of cool-down and heat-up (no nuclear heating) using gas law
- Measuring fuel rod pressure in the plenum (end-plug) is subject to accessibility of gas released from the fuel stack
 - No problem with fresh fuel (fuel-clad gap open at power)
 - For fuel rods with a tight gap at power, brief power reductions can be made allowing the fuel-clad gap to reopen and gas to percolate to the plenum

3. Fuel Stack Length Change

- Measuring changes in fuel stack length provides data on
 - Fuel densification and swelling (fuel-clad gap open)
- Fuel densification and swelling are of interest because of the way they affect the development of the fuel-clad gap e.g. as fresh fuel densifies initially, the gap size increases inducing an increase in the fuel temperature
- Dimensional stability behaviour varies between different fuel types and this is something that fuel models need to capture
 - Fuel density
 - Pellet shape (flat ended versus dished, hollow versus solid)
 - MOX fuel, Gd-doped fuel, other additive fuels

Measuring Fuel Stack Length Change

- Magnetic core holder fitted in fuel rod end-plug and spring loaded against fuel stack end
- Axial densification / swelling of the fuel stack acts on spring so magnetic core holder position moves
- Core movement sensed by LVDT
- In-pile calibration at start of life (zero point), then subsequent signal gives change in fuel stack length
- Stops being relevant once fuel-clad gap closes
 - Because of connection between fuel dimensional changes and fuel temperature, fuel thermocouple often inserted at other end of same fuel rod

4. Fuel Cladding Length Change

- Measuring changes in fuel cladding length can provide data on cladding strain from fuel pellet to cladding mechanical interaction (PCMI) under different conditions which can be used for
 - model development
 - predicting the outcome of situations where clad integrity may be jeopardised
- When there is no PCMI, measurements can provide data on
 - Heat transfer properties of surface layers (oxide, crud)
 - Irradiation growth of cladding
 - Onset of dry-out (in dry-out testing)

Measuring Fuel Cladding Length Change

- Upper end of fuel rod fixed to test rig structure
- Magnetic core holder fitted to end-plug at lower (free) end of fuel rod
- Change in fuel cladding length causes core holder position to move relative to an LVDT
 - In-pile calibration at start of life (zero point), then subsequent signal gives change in fuel cladding length

5. Fuel Rod Outer Diameter Change

- Measuring fuel cladding outer diameter changes can provide data on
 - PCMI during power transients (continuous measurement)
 - Cladding creep (measurement made once a week)
 - Oxide / crud build-up on a fuel rod (measurement made once a month)
- Monitoring diametral in addition to the axial components of PCMI enables better understanding of what occurs during power transients
- Most fuel performance codes contain models for cladding creep as this affects the development of the fuel-clad gap as well as influencing a fuel rod's PCMI behaviour
- Discharge burn-ups are often limited by the corrosion behaviour of the fuel rod cladding so knowing how different claddings behave in different water chemistries in-pile is a vital part of alloy development

Measuring Fuel Rod Outer Diameter

Instrument based on the LVDT principle

- Transformer body connected to armature via a pivot point
- Feelers on opposite sides of the fuel rod trace the fuel rod outer diameter profile
- Unit is driven along the fuel rod by a hydraulic system
- Position sensor used to sense axial position of DG along the rod
- Calibration steps machined into the fuel rod end-plug surface

What else can be measured and to what fuel performance issue does the measurement relate?

- Thermal-hydraulic parameters
 - temperature, temperature increase
 - flow
 - pressure
- Nuclear conditions
 - neutron flux
 - gamma flux
- Water Chemistry parameters
 - Electrochemical Corrosion Potential (ECP)
 - High temperature coolant conductivity
 - On-line potential drop corrosion monitor
 - Electrochemical Impedance spectroscopy (EIS)

Electrochemical Corrosion Potential

- Electrochemical corrosion potential (ECP) of a corroding metal is the potential difference between it and the standard hydrogen electrode (SHE)
 - A key measurement when the corrosion performance of an in-reactor material is to be assessed or measures taken to optimise its performance
 - Arises from a combination of the surface conditions of the specimen and the concentrations of dissolved oxidants
 - Determined by measuring the potential between a sample and a reference electrode, and adding the (calculated) potential versus SHE of the reference electrode
 - A reference electrode is a half-cell that produces a stable and reproducible potential

Measuring ECP

- Mechanical seal in transition between ceramic parts and metal parts - no brazing
- Platinum reference electrode reliable – but does not give SHE values in oxygenated water
- Palladium reference electrodes show promise for use in BWR conditions
- Prototype Fe/Fe₃O₄ reference electrode developed - can be used in hydrogenated and oxygenated water

Methods (secondary measurements)

- Gas flow through a fuel stack (hydraulic diameter)
- Gas flushing plus gamma spectroscopy (fission gas release)
- Noise analysis
- Fuel temperature response to scram

Secondary measurements

- Hydraulic diameter measurements determine the resistance that the fuel stack offers against gas flow and is applied to
 - map changes of the fuel-clad gap with increasing burnup
 - determine loosening of the fuel column in clad lift-off tests
 - find the resistance of the fuel stack against axial gas transport (e.g. in LOCA or from local fission gas release).
- Gamma spectrometry (fission gas release) allows assessing
 - low temperature fission gas release,
 - recoil component,
 - microstructural properties such as the surface-to-volume ratio
- Fuel time constant can be derived through evaluation of
 - rapid power changes (reactor scram)
 - noise analysis (fuel thermocouples + fast response ND)

Hydraulic diameter (HD)

- Hydraulic diameter measurements determine the resistance that the fuel stack offers against gas flow and is applied to
 - map changes of the fuel-clad gap with increasing burnup
 - determine loosening of the fuel column in clad lift-off tests
 - find the resistance of the fuel stack against axial gas transport (e.g. in LOCA or from local fission gas release).
- Experimental set-up
 - direct measurement of gas flow driven by a pump
 - empty a reservoir of gas at overpressure through the fuel rod and measure pressure change in reservoir
- Due to pellet cracking and the convoluted flow path, the HD is a measure of permeability rather than an indication of the pellet-clad gap

Hydraulic diameter measurements

$$D_{H} = 4 \sqrt{\frac{0.021 \cdot \eta \cdot L \cdot R \cdot T \cdot n}{\pi \cdot D \cdot (p_{1}^{2} - p_{2}^{2})}}$$

D_H = hydraulic diameter D = mean fuel diameter

- p_1 = gas pressure supply side
- p_2 = gas pressure return side
- Ha = Hagen number
- η = dynamic viscosity
- L = flow channel length
- R = universal gas constant
- T = gas temperature

The examples show long-term developments (upper right) and short-term changes (due to clad creep-out; lower right)

Gamma spectrometry

Gamma spectrometry (fission gas release) allows assessing

- low temperature fission gas release
- recoil component
- micro-structural properties such as the surface-to-volume ratio

Gas flow analysis

Noise Analysis Technique

- Used in studies of
 - thermal properties
 - pellet-clad mechanical interaction
 - fission gas release
- for determination of
 - fuel and thermocouple time constants
 - pellet-clad interaction coherence function
- by correlating two measurements
 - fast response neutron detector (power)
 - and
 - fuel thermocouple
 - cladding elongation detector

A practical example PCMI and Rod Overpressure – Clad Lift-off

- Rod overpressure

 (>130 bar above system
 pressure) causes clad lift-off
 and a measurable
 temperature increase
- Clad lift-off causes the hydraulic diameter to increase
- Noise analysis (power elongation) indicates continued contact between fuel and cladding

The END

