Top Quark Mass Reconstruction from High Pt Jets at LHC

IJAZ AHMED National Centre for Physics Islamabad, Pakistan

Signaling the Arrival of the LHC Era, ICTP, Italy

Outlines

- o Motivations of Top Physics
- Topology of Lepton + Jets
- o High Pt top basic idea
- o Method for jets selection
- o Top quark mass reconstruction from jets
- o Jets clustering in detector
- o Clusters invariant masses Mtop clus
- o Underlying Event (UE_{clus}) estimation and subtraction
- o Systematics
- o Summary

Large Hadron Collider (LHC)

Collisions at LHC

Top Quark Properties, Production and Decay muon Striking Features of top quark neutrino ✓ Heaviest particle (spin $\frac{1}{2}$, charge 2/3) bottom quark W boson ✓ Origin of mass, EWSB, Higgs top quark protons protons ✓ Short life time ($\tau_{top} = 1/\Gamma_{top}$, $\tau_{had} = 1/\Lambda_{QCD}$) ✓ No bound state top guark W boson quark bottom quark ✓ Yukawa coupling-unity Jet quark g leek low energy muon g leer Jet Jet 10% 90% mmtt decay modes need to reconstruct and identify • electrons, muons cs ~66.5% epton + jets • missing E_{T} (neutrinos) tau + jets all hadronic • b-jets Iight jets (u,d,c,s) W^{-} ūd ττ tau + jets τε/τμ τ^{-} μ^{-} lepton + jets dilepton ~29% e⁺ μ⁺ τ⁺ ~4.5% cs ud NLO Cross-section for tt~ production at LHC is $\sigma(tt)$ ~830pb w^+

Compact Muon Solenoid Detector (CMS)

Boosted Top Quark Analysis

Highly boosted top quarks decay back-to-back ✓ Higher top boost small opening angle of W-boson and b-quark High Pt top quarks large probability of jets overlaping in space. Invariant mass of the objects in larger cone around the top quark direction of flight and then correlation with the real top mass. Top quark needs to have a larger : Pt > 200 GeV. Reduces the combinatorial background. The systematic effects due to jet energy calibration and gluon effects Potential to reduce the systematic errors

Event Selection at Partonic Level

$$t\bar{t} \rightarrow bW^+bW^- \rightarrow b\bar{b}q\bar{q}\mu\nu_{\mu}$$

≥ P_{t}^{top} > 200 GeV, |η| < 3.0

 $≥ P_t^{anti-top} > 200 GeV, |η| < 3.0$

 P_t^{μ} > 30 GeV, $|\eta|$ < 2.0

P_t^q > 20 GeV, |η| < 2.5</p>

Fast simulation based samples

165 Top mass point = 20K events

175 Top mass point = 50K events

185 Top mass point = 20K events

X-section approximately 1% of the total tT cross-

section

Pile-up events are included

	no of events With pile-up	Int luminosity fb ⁻¹	X-section pb	
$t\bar{t} \rightarrow bW^+bW^- \rightarrow bq\bar{q}bl\nu(l=\mu)$	49535	7.23	6.85	

Distributions at Vertex Level

Identifications of correct jets (Jet-Parton Matching)

- 2 light jets corresponds to 2 quarks from W boson
- Four possible jet combinations
- Take best combination

Top Quark Selection: Leading jets Topology

Top Quark Selection: Leading jets Topology

number of events/8 GeV

 First peak from the wrong jet combination

 Exchanging the leptonic b-jet into hadronic b-jet

One of the 4 leading jets could be coming from the gluon radiation

Soft QCD events

 Second peak corresponds to the correct combinations, because at preselection level we demand high Pt jets

Calorimetric Clusters Reconstruction Method

Invariant mass of all calorimeters clusters in $\Delta \eta \times \Delta \phi$ around top direction

$$m^{2}_{clusters}(\Delta R) = (E^{2} - P^{2}) = (\sum_{i=0.7}^{n\Delta R} E_{i})^{2} - (\sum_{i=0.7}^{n\Delta R} \overline{P}_{i})^{2}$$

 \checkmark E_i represents total energy of the ith cluster

✓nDR runs over all clusters within selected cone size

✓P_i its 3-momenta vector

Known: E,η,ϕ about clusters

Assumptions: considering particles to be mass-less

 $m \approx 0 \Longrightarrow E^2 \equiv P^2$ $P_x = E \sin \vartheta \cos \varphi$ $P_y = E \sin \vartheta \sin \varphi$ $P_z = E \cos \vartheta$

Reco clusters pseudo-rapidy

Calorimeters identifications

Clusters Transverse Energy Deposition

• All clusters opening angle w.r.t reco. Top quark flight direction.

Underlying Event Estimation Method

It is not only minimum bias even!

 The underlying event is everything except the two outgoing hard scattered jets
 In a hard scattering process, the underlying event has a hard component (initial+final state radiation and particles from the outgoing hard scattered partons) and a soft component (beambeam remnants)

Jet Isolation < No of clusters > / high P _t eve				event			
		η <0.7	η < 1.4	$ \eta < 2.1$	η < 3.0	η > 3.0	$ \eta < 5.0$
	$\Delta \mathbf{R} = 0.7$	<mark>626.89</mark> 38	509.19 88	445.77 134	363.00 229	236.77 182	326.78 352
	$\Delta \mathbf{R} = 0.8$	623.07 33	503.17 80	439.69 125	356.43 218	236.76 181	321.39 33
	$\Delta \mathbf{R} = 0.9$	<mark>618.47</mark> 29	496.66 73	433.11 116	349.36 180	236.69 330	315.67 208
	$\Delta \mathbf{R} = 1.1$	<mark>614.85</mark> 22	485.24 22	420.82 22	335.58 22	236.35 22	304.62 22
	$\Delta \mathbf{R} = 1.5$	599.83 8	459.49 28	394.11 56	306.64 136	237.03 169	283.05 53

Electromagnetic Calorimeter

	Hadronic Calorimeter					
Jet Isolation	<pre>< no of clusters > / high P. event</pre>					
	η < 0.7	η < 1.4	η < 2.1	η < 3.0	η >2.5	η < 5.0
Δ R = 0.7	201.24	173.59	102.26	102.26	53.99	78.73
	76	81	708	708	309	1383
Δ R = 0.8	199.50	172.54	100.71	100.71	53.99	77.43
	66	66	66	66	66	66
ΔR = 0.9	198.50	171.20	99.28	99.28	54.01	76.23
	57	146	630	630	303	1285
Δ R = 1.1	197.46	168.08	96.26	96.26	54.17	73.79
	41	112	546	546	295	1175
ΔR=1.5	192.99	164.27	91.25	69.88	54.77	<mark>69.88</mark>
	16	55	372	922	268	922

Summary of Expected Systematic

Source	∆m _{top} (GeV/c ²)
Of uncertainity	·
Re-calibration	0.9
Electronic noise	1.2
ISR on/off	0.14
FSR on/off	0.07
B-quark fragmentation	0.3
UE estimate (+-10%)	1.34
Cluster mis calibration: +-1(5)%	0.7(1.3)
Calorimeter: e/h=1.25 (1.63)	0.8(0.3)

Summary

- A new method for Underlying event (UE) is developed
- An alternate method for top mass reconstruction in CMS is presented, strongly depends on Calorimeters.
- Analysis based (Pt^{op} > 200 GeV) with Full and Fast Simulation of CMS detector is performed.
- Statistical error 1-1.5 GeV on top mass is determined.

BACKUP SLIDES

Nominal mass—fitted mass ~ 65 GeV

Calibrated Top Quark mass Milb

• Peaks are shifted towards the nominal Top mass

Introducing three Approaches for jets Selection

Three approaches to select events + jet combination (for top direction)

Leading jets > = 2 b-tagged jets, > = 2 non b-tagged jets
Exactly 4 jets, =2 b-tagged jets, = 2 non b-tagged jets
> 2 leading b-jets, 2 light jets with m_{ii} closest to W mass

Top Quark Selection: Four jets Topology

Hadronic top selection

- Four highest Pt jets selection
- b-jets identification with b-tagging
- Two light jets invariant mass reconstruction
- Hadronic b-jet requires
 - For away from isolated muon with maximum distance 0.4
 - or closests to light jets

1 quark matched = 20.98% 2 quarks matched = 43.26%

Kinematical cuts	Selection efficiency %	No. of events
Before selection	100	49535
no of iso muons	93.6	46370
\geq 1 iso muon P _t > 30 GeV	92.7	45916
≥ 1 reco light jets P _t > 20 GeV	92.7	45915
Exectly 4 jets $ \eta <$	21.3	10551
Exectly 2 light jets	8.0	3941
Exectly 2 b-jets	8.0	3941
m _{jj} − m _W < 20 GeV	3.9	1937

Top Quark Selection: j+j→ W

Comments on M_{iib}

- Study based on shape of distributions for top direction determination
- Explored three types of selection criteria for hadronic top mass reconstruction
 - Four jets selection results low efficiency with higher W purity
 - Jets with invariant mass close to W have higher efficiency with intermediate purity of W
 - Leading jets selection gives sharp and narrow dist. shape with less long tail behaviour and reasonable selection efficiency

