Electron trigger performance of the ATLAS detector

G. Navarro on behalf of ATLAS Collaboration Universidad Antonio Nariño

Signaling the Arrival of the LHC Era December 8 – 13 2008

Outline

- Detector overwiew
- Review of the Atlas trigger system
- Electron trigger and physics performance
- Trigger robustness studies
- Trigger efficiency from real data
- Summary

Detector Overview

Overall detector layout

- Magnet configuration
- Inner Detector
- Electromagnetic calorimeter
- Hadronic calorimeter
- Muon spectrometer

The Atlas Experiment at the CERN Large Hadron Collider, ATLAS Collaboration, JINST 3:S08003,2008

Detector Overview
Bunch crossing rate: 40 MHz.
 ~ 23 interactions per crossing at design luminosity.
 Event data recording → 200 Hz
• Factor of rejection of ~ 10^5 .
Trigger must select the right events!!!

Review of the ATLAS trigger system

Trigger consists of three levels of event selection:

Level-1 (L1)Level-2 (L2)Event Filter

High level Trigger (HLT)

- Hardware based
- → Uses reduced granularity
- → Maximum acceptance rate ~ 75KHz
- → Decision must be reached within 2.5 µs after the bunch crossing.

Review of the ATLAS trigger system

<u>HLT</u>

- Uses the full granularity of the calorimeter and muon chamber that improves the threshold cuts
- → Uses data from ID → track reconstruction enhances particle identification.

<u>L2</u>

- Seeded by Regions of Interest (Rols)
- → Reduces event rate to ~ 3.5 Khz
- Average event processing time of 40 ms.

G. Navarro, Signaling the Arrival of the LHC Era

Review of the ATLAS trigger system

EVENT FILTER

- Uses offline analysis procedures on fully-built events
- → Reduces event rate to ~ 200 Hz
- Average event processing time of 4 seconds.

Electron trigger and physics performance

• Events with electrons in final state are important signatures for many physics analysis

Searches for new physics $H \rightarrow ZZ^* \rightarrow eeee, ee\mu\mu$
Susy particles decays
 $Z' \rightarrow ee, W' \rightarrow e\nu$ SM precision physicstop physics

• There are processes involving electrons that will be important for the calibration, alignment and the detector performance monitoring: $Z \rightarrow ee, W \rightarrow ev$, single electron, J/Psi $\rightarrow ee$

rare B decays

Electron trigger must ensure good selection of the above physics channels!!!!!!

G. Navarro, Signaling the Arrival of the LHC Era

Electron trigger and physics performance

L1 selection

- → Electrons selected using calorimeter → trigger towers
- Algorithm based on a sliding 4x4 window trigger towers which looks for local maxima.
- Trigger object is considered a candidate if some requirements are satisfied.

L2 selection

- Electron selection uses calorimeter information in first step cluster
 E₁ and shower shapes of different layers of the EM calo.
- Inner Detector information is used: tracks are reconstructed and matched calo clusters.

• EF selection

- → Uses offline reconstruction algorithms.
- → Identification similar to the offline.

Electron trigger physics performance

Expected Performance of the ATLAS Experiment Detector, Trigger and Physics, CERN-OPEN-2008-020

- To reduce the rate it is necessary to impose tight cuts in trigger selection.
- It is necessary to analyze possible bias in the trigger: studies of trigger efficiency plots as function of E_τ, η and φ
- Trigger efficiency
 # electrons that pass trigger level / # offline identified electrons
- Trigger efficiencies computed with simulated samples of single electron, Z→ ee, W→ ev, J/Psi → ee, etc.
- Signatures studied for start up: e5, e10, e20, e105 for L=10³¹ cm⁻²s⁻¹ and e22i for higher luminosities.

Electron trigger physics performance

Electron trigger physics performance

- → Trigger eff. of the trigger e105 vs. |η|.
- Trigger aimed at selecting very high p₁ electrons.

- Trigger eff. dependency on different offline electron identification cuts.
- → Sample: single electron with misalignment and E_T between 7 and 80 GeV.
- → Trigger e15i

Trigger Robustness studies

• Effects of pile-up

Trigg. Level	e۱۲i w/out pile-up	e¹ĭi w/ pile-up	e ^۲ ۲i w/out pile-up	e ^۲ ۲i w/ pile-up
L	9T.T±+.T %	91.9±0.3 %	95.5±0.1 %	95.1±0.3 %
L۱+L۲	86.3±0.4 %	84.7±0.4 %	89.6±0.2 %	88.9±0.4 %
EF	٧٩.٢±٠.٥ %	78.8±0.5 %	88.0±0.2 %	87.5±0.4 %

•Trig. Eff. for the e12i and e22i trigger.

- Samples of single e at L= 2x10³³ cm⁻²s⁻¹
- with and without pile-up.Difference of 2% in L1
- due to isolation cuts.
- 1% loss at HLT.

• Trig. Eff. For $W \rightarrow ev$ samples with pile up misalignment and beamspot displacement.

Level	ld reconstruction normal	ld reconstruction robust
L1	92 ± 1%	93.21 ± 0.08%
L1+L2	57 ±2%	85.87 ± 0.11 %
L1+L2+EF	56± 2 %	85.00 ± 0.12 %

G. Navarro, Signaling the Arrival of the LHC Era

Trigger Efficiency from Real Data

Tag and Probe method

- → Uses offline identification of Z→ee decays to select sample of electrons.
- Electron candidate that satisfies a trigger signature is reconstructed and identified offline "tag electron"
- → Z→ee requires second electron identified offline "probe electron" → used for computing trigg. eff.

G. Navarro, Signaling the Arrival of the LHC Era

SUMMARY

- We have reviewed the ATLAS trigger system that has to deal with a reduction of the bunch crossing rate from 40 MHz to 200 Hz.
- As events with electrons in the final state are very important for physics at LHC, it is necessary to identify them properly.
- A short description of the electron identification has been made.
- The performance of the electron trigger has been studied for the basic signatures and menus for the LHC commissioning.
- The robustness of the electron trigger has been tested studying pile up, beamspot displacements, and other possible effects.
- A method for determining the trigger efficiency for real data has been described. The results of a study using a $Z \rightarrow ee$ MC sample shows good performance.