Signaling the Arrival of the LHC Era

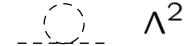
The lightest Higgs boson mass in effective field theory with bulk and brane SUSY breaking

Nobuhiro Uekusa (Osaka U)

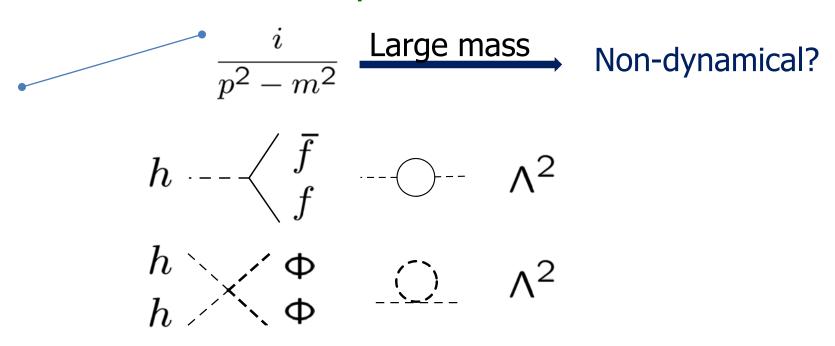
8-13 Dec 2008 *The Abdus Salam*International Centre for Theoretical Physics

The value of the mass of Higgs boson

Radiative corrections

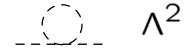


Contributions of heavy fields

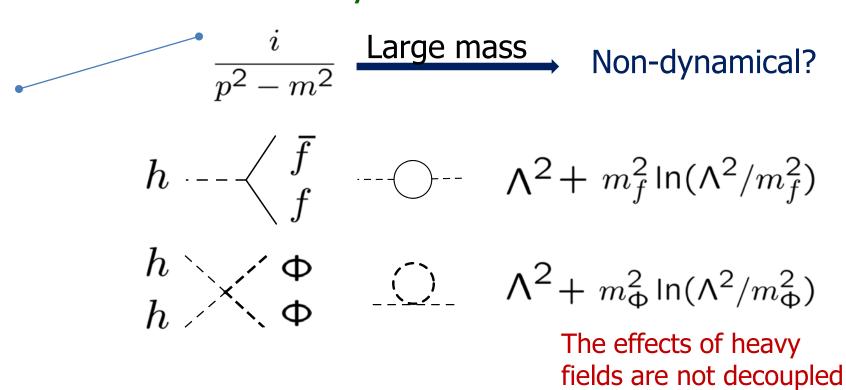


The value of the mass of Higgs boson

Radiative corrections



Contributions of heavy fields



SUSY Cancellation between bosonic and fermionic contributions

SUSY breaking

$$\Delta m_h^2 = m_{\rm Sp}^2 \left[\frac{\lambda}{16\pi^2} \ln \left(\frac{\Lambda}{m_{\rm Sp}} \right) \right]$$

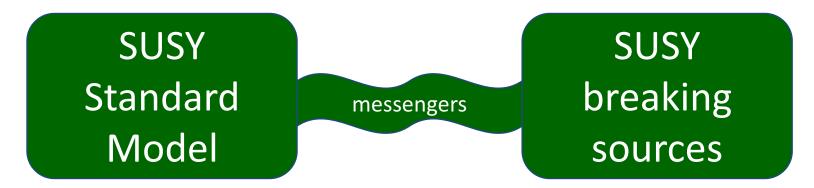
 m_{SP} Largest mass scale associated with the mass splittings between bosons and fermions

- λ Dimensionless couplings
- Ultraviolet momentum cutoff

$$\lambda \sim \mathcal{O}(1)$$
, $\Lambda \sim M_P$,
$$m_{\mathrm{SP}} \sim \mathrm{TeV} \qquad \Delta m_h^2 \sim m_W^2$$

How is SUSY broken?

SUSY must be broken in a way with no SUSY flavor problem



The mediation does not distinguish flavor

How is SUSY broken?

SUSY must be broken in a way with no SUSY

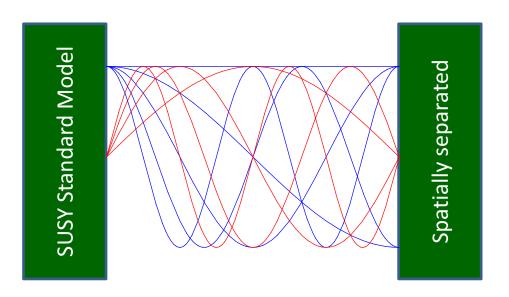
Extra

dimensions

flavor problem

SUSY Standard Model SUSY breaking sources

Mirabelli-Peskin 97, Randall-Sundrum 98, ...



There are many even-function and odd-function modes

The mass splitting for each mode contributes to

$$\Delta m_h^2 = m_{\rm Sp}^2 \left[\frac{\lambda}{16\pi^2} \ln \left(\frac{\Lambda}{m_{\rm Sp}} \right) \right]$$
 infinite?

F-term SUSY breaking .. Mirabelli-Peskin 97, Marti-Pomarol 01, Clemente-King-Rayner 01, .. Scherk-Schwarz SUSY breaking 79 .. Delgado-Pomarol-Quiros 98, Barbieri-Hall-Nomura 01, Bagger-Feruglio-Zwirner 01, Haba-Hosotani-Kawamura 03, ..

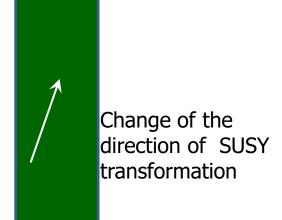
There are many even-function and odd-function modes

The mass splitting for each mode contributes to

$$\Delta m_h^2 = m_{\rm Sp}^2 \left[\frac{\lambda}{16\pi^2} \ln \left(\frac{\Lambda}{m_{\rm Sp}} \right) \right]$$
 infinite?

F-term SUSY breaking .. Mirabelli-Peskin 97, Marti-Pomarol 01, Clemente-King-Rayner 01, .. Scherk-Schwarz SUSY breaking 79 .. Delgado-Pomarol-Quiros 98, Barbieri-Hall-Nomura 01, Bagger-Feruglio-Zwirner 01, Haba-Hosotani-Kawamura 03, ..

Scherk-Schwarz SUSY breaking



There are many even-function and odd-function modes

The mass splitting for each mode contributes to

$$\Delta m_h^2 = m_{\rm Sp}^2 \left[\frac{\lambda}{16\pi^2} \ln \left(\frac{\Lambda}{m_{\rm Sp}} \right) \right]$$
 infinite?

F-term SUSY breaking .. Mirabelli-Peskin 97, Marti-Pomarol 01, Clemente-King-Rayner 01, .. Scherk-Schwarz SUSY breaking 79 .. Delgado-Pomarol-Quiros 98, Barbieri-Hall-Nomura 01, Bagger-Feruglio-Zwirner 01, Haba-Hosotani-Kawamura 03, ..

Introduction

 Λ^2 , $m^2 \ln \Lambda$,

SUSY, extra dimensions

The Higgs bosons in mass eigenstates

Notation for the lightest Higgs boson

Radiative corrections in an effective 4D picture

Kaluza-Klein mode contributions

F-term and Scherk-Schwarz SUSY breaking

The Higgs boson mass corrections

The MSSM Higgs
$$H_1 = \begin{pmatrix} H_1^0 \\ H_1^- \end{pmatrix} = \begin{pmatrix} H_d^0 \\ H_d^- \end{pmatrix}, \quad SU(3)_c \times SU(2)_L \times U(1)_Y$$
 $(1,2,-\frac{1}{2})_+$ $(1,2,-\frac{1}{2})_+$ $(1,2,+\frac{1}{2})_+$ $(1,2,+\frac{1}{2})_$

$$V = (|\mu|^2 + m_1^2)|H_1|^2 + (|\mu|^2 + m_2^2)|H_2|^2 + [bH_1H_2 + H.c.]$$
$$+ \frac{1}{8}g^2(H_2^{\dagger}\sigma^0H_2 + H_1^{\dagger}\sigma^0H_1)^2 + \frac{1}{8}g'^2(|H_2|^2 - |H_1|^2)^2$$

- * g, g' $SU(2)_L$, $U(1)_Y$ gauge couplings
- * μ a supersymmetric mass
- * m_1 , m_2 , b SUSY-breaking coupling constants

$$= (|\mu|^2 + m_1^2)(|H_1^0|^2 + |H_1^-|^2) + (|\mu|^2 + m_2^2)(|H_2^+|^2 + |H_2^0|^2)$$

$$+ [b(H_1^-H_2^+ - H_1^0H_2^0) + \text{H.c.}] + \frac{1}{2}g^2|H_2^+H_1^{0*} + H_2^0H_1^{-*}|^2$$

$$+ \frac{1}{8}(g^2 + g'^2)(|H_2^+|^2 + |H_2^0|^2 - |H_1^0|^2 - |H_1^-|^2)^2.$$

$$V^{\text{neutral}} = (|\mu|^2 + m_1^2)|H_1^2|^2 + (|\mu|^2 + m_2^2)|H_2^2|^2 - |H_1^2|^2)^2 + \frac{1}{8}(g^2 + g'^2)(|H_2^2|^2 - |H_1^2|^2)^2.$$

$$\begin{split} V &= (|\mu|^2 + m_1^2)((H_1^0|^2) + |H_1^-|^2) + (|\mu|^2 + m_2^2)(|H_2^+|^2 + (H_2^0|^2) \\ &+ \left[b(H_1^-H_2^+ - (H_1^0H_2^0) + (\text{H.c.}) + \frac{1}{2}g^2|H_2^+H_1^{0*} + H_2^0H_1^{-*}|^2 \right. \\ &+ \frac{1}{8}(g^2 + g'^2)(|H_2^+|^2 + (|H_2^0|^2) + (|H_1^0|^2) - |H_1^-|^2)^2. \end{split}$$

$$V^{\text{neutral}} = (|\mu|^2 + m_1^2)|H_1^0|^2 + (|\mu|^2 + m_2^2)|H_2^0|^2 - |H_1^0|^2)^2 - [6H_1^0H_2^0] + \text{H.c.}] + \frac{1}{8}(g^2 + g'^2)(|H_2^0|^2 - |H_1^0|^2)^2$$

$$= \frac{1}{2} m_{H^0}^2 h^{02} + \frac{1}{2} m_{H^0}^2 H^{02} + \frac{1}{2} m_{G^0}^2 G^{02} + \frac{1}{2} m_{A^0}^2 A^{02}.$$

$$m_{h^0}^2 = \frac{1}{2} \left[m_{A^0}^2 + m_Z^2 - \sqrt{(m_{A^0}^2 + m_Z^2)^2 - 4m_{A^0}^2 m_Z^2 \cos^2 2\beta} \right]$$

$$m_{H^0}^2 = \frac{1}{2} \left[m_{A^0}^2 + m_Z^2 + \sqrt{(m_{A^0}^2 - m_Z^2)^2 + 4m_{A^0}^2 m_Z^2 \sin^2 2\beta} \right].$$

$$m_{A^0}^2 = \frac{2b}{\sin 2\beta}$$
, $\tan \beta = \frac{v_2}{v_1}$. $m_{G^0}^2 = 0$.

$$m_{h^0}^2 \le m_{h^0}^2 (m_{A^0}^2 \to \infty) = m_Z^2 \cos^2 2\theta$$
. The lightest Higgs

charged
$$m_{H^\pm}^2 = m_{A^0}^2 + m_W^2, \quad m_{G^\pm}^2 = 0.$$

Stop and top
$$\frac{3}{(4\pi)^2} (m_{\tilde{t}}^2 + |y_t H_2^0|^2)^2 \left(\ln \frac{m_{\tilde{t}}^2 + |y_t H_2^0|^2}{\Lambda^2} - \frac{1}{2} \right)$$
 to the eff potential $-\frac{3}{(4\pi)^2} |y_t H_2^0|^4 \left(\log \frac{|y_t H_2^0|^2}{\Lambda^2} - \frac{1}{2} \right)$.

With an expansion by powers of $|y_t H_2^0|^2/m_{\tilde{t}}^2$,

$$-\frac{3}{16\pi^2}|_{\mathfrak{R}_2^0|^4}\left(\ln\frac{|_{\mathfrak{R}_2^0|^2}}{m_{\tilde{e}}^2+|_{\mathfrak{R}_2^0|^2}}-\frac{3}{2}\right)\equiv U_{\tilde{e}}(|H_2^0|^2).$$

$$m_{h^0}^2 = \frac{1}{2} \left[m_{A^0}^2 + m_Z^2 + \Delta_t - \sqrt{((m_{A^0}^2 - m_Z^2)\cos 2\beta + \Delta_t)^2 + (m_{A^0}^2 + m_Z^2)^2 \sin^2 2\beta} \right].$$

$$\Delta_t = 2v_2^2 U_t''(v_2^2) = 2v_2^2 \left(\frac{3}{8\pi^2} |\text{sel}^4 \ln \frac{|\text{sel}^2 v_2^2}{m_t^2} \right) = \frac{3\sqrt{2}m_t^4 G_F}{2\kappa^2 \sin^2 \beta} \ln \left(\frac{m_t^2}{m_t^2} \right).$$

$$G_F = \frac{1}{2\sqrt{2}}(v_1^2 + v_2^2)^{-1} = 1.17 \times 10^{-5} \text{ GeV}^{-2}.$$

The upper bound to the lightest Higgs boson mass

$$\begin{split} m_{h^0}^2 & \leq m_{h^0}^2 (m_{A^0}^2 \to \infty) = m_Z^2 \cos^2 2\beta + \Delta_t \sin^2 \beta \\ & = m_Z^2 \cos^2 2\beta + \frac{3\sqrt{2} m_t^4 G_F}{2\pi^2} \ln \left(\frac{m_{\tilde{t}}^2}{m_t^2} \right). \end{split}$$

$$m_t$$
 181GeV $m_{\tilde{t}}$ 1TeV $\longrightarrow \frac{3\sqrt{2}m_t^4G_F}{2\pi^2}\ln\left(\frac{m_{\tilde{t}}^2}{m_t^2}\right)$ (100GeV)²

$$m_{h^0}^2 = \frac{1}{2} \left[m_{A^0}^2 + m_Z^2 + \Delta_t - \sqrt{((m_{A^0}^2 - m_Z^2)\cos 2\beta + \Delta_t)^2 + (m_{A^0}^2 + m_Z^2)^2 \sin^2 2\beta} \right].$$

$$\begin{split} \Delta_{e} &= 2v_{2}^{2}U_{1}^{\mu}(v_{2}^{2}) = 2v_{2}^{2} \left(\frac{3}{8\pi^{2}} |\mathbf{y}_{e}|^{4} \ln \frac{|\mathbf{y}_{e}|^{2}v_{2}^{2}}{m_{e}^{2}} \right) = \frac{3\sqrt{2}m_{e}^{4}G_{F}}{2\pi^{2}\sin^{2}\beta} \ln \left(\frac{m_{e}^{2}}{m_{e}^{2}} \right). \\ G_{F} &= \frac{1}{2\sqrt{2}} (v_{1}^{2} + v_{2}^{2})^{-1} = 1.17 \times 10^{-5} \,\, \mathrm{GeV^{-2}}. \end{split}$$

Kaluza-Klein mode contributions

$$\begin{split} &\frac{3}{(4\pi)^2} \left(m_{\tilde{t}}^2 + |y_t H_2|^2 + \frac{n^2}{R^2} \right)^2 \left(\ln \frac{m_{\tilde{t}}^2 + |y_t H_2^0|^2 + n^2/R^2}{\Lambda^2} - \frac{1}{2} \right) \\ &- \frac{3}{(4\pi)^2} \left(|y_t H_2^0|^2 + \frac{n^2}{R^2} \right)^2 \left(\ln \frac{|y_t H_2^0|^2 + n^2/R^2}{\Lambda^2} - \frac{1}{2} \right). \end{split}$$

For a detail in MSSM + UED, Bhattacharyya-Majee-Raychaudhuri 07, ...

With an expansion by powers of $(m_{\tilde{\tau}}/(nR^{-1}))$,

$$\frac{3}{16\pi^2} \frac{R^2}{n^2} m_{\tilde{t}}^2 |y_t H_2^0|^4 = U_t^{(n)} (|H_2^0|^2).$$

$$m_{h^0}^2 = \frac{1}{2} \left[m_{A^0}^2 + m_Z^2 + \Delta_t + \sum_{n=1}^{\infty} \Delta_t^{(n)} \right]$$

$$-\sqrt{\left((m_{A^0}^2-m_Z^2)\cos 2\beta + \Delta_t + \sum_{n=1}^{\infty} \Delta_t^{(n)}\right)^2 + (m_{A^0}^2 + m_Z^2)^2 \sin^2 2\beta} \ .$$

$$\Delta_t^{(n)} = 2v_2^2 U_t^{(n)''}(v_2^2) = \frac{3}{4\pi^2} \frac{R^2}{n^2} m_t^2 |y_t|^4 v_2^2 = \frac{3\sqrt{2} m_t^4 G_F R^2}{2\pi^2 \sin^2 \beta} m_t^2.$$

$$\begin{split} m_{h^0}^2 & \leq m_{h^0}^2(m_{A^0}^2 \to \infty) = m_Z^2 \cos^2 2\beta + \left(\Delta_t + \sum_{n=1}^\infty \Delta_t^{(n)}\right) \sin^2 \beta \\ & = m_Z^2 \cos^2 2\beta + \frac{3\sqrt{2} m_t^4 G_F}{2\pi^2} \ln \left(\frac{m_{\tilde{t}}^2}{m_t^2}\right) + \frac{\sqrt{2}}{4} m_t^4 G_F (R m_{\tilde{t}})^2. \\ & \qquad \qquad \sum_{n=1}^\infty \frac{1}{n^2} = \frac{\pi^2}{6} \simeq 1.6. \end{split}$$

If $m_{\tilde{t}} \propto R^{-1}$, Kaluza-Klein mode contributions are independent of the compactification scale

$$\begin{split} m_{h^0}^2 &= \frac{1}{2} \left[m_{A^0}^2 + m_Z^2 + \Delta_t + \sum_{n=1}^{\infty} \Delta_t^{(n)} \right. \\ &- \sqrt{ \left((m_{A^0}^2 - m_Z^2) \cos 2\beta + \Delta_t + \sum_{n=1}^{\infty} \Delta_t^{(n)} \right)^2 + (m_{A^0}^2 + m_Z^2)^2 \sin^2 2\beta} \right]. \\ \Delta_t^{(n)} &= 2 \pi_Z^2 U_t^{(n)} \left(\pi_Z^2 \right) = \frac{3}{4\pi^2} \frac{\mathbb{R}^2}{\pi^2} \pi_T^2 \pi_T^2 \frac{3\sqrt{2} \pi_T^4 G_T \mathbb{R}^2}{2\pi^2 \sin^2 \beta} \pi_Z^2. \end{split}$$

The SM gauge bosons, 3rd
generation of
quarks and leptons,
2 Higgs fields and their superpartners

$$\begin{pmatrix} \tilde{\psi}^1 \\ \tilde{\psi}^2 \end{pmatrix} (x,y) = \sqrt{\frac{2}{\pi R}} \begin{pmatrix} \cos \frac{\beta y}{2\pi R} & \sin \frac{\beta y}{2\pi R} \\ -\sin \frac{\beta y}{2\pi R} & \cos \frac{\beta y}{2\pi R} \end{pmatrix} \begin{pmatrix} \frac{1}{\sqrt{2}} \tilde{\psi}^{1,0}(x) + \tilde{\psi}^{1,n}(x) \cos \frac{ny}{R} \\ \tilde{\psi}^{2,n}(x) \sin \frac{ny}{R} \end{pmatrix}.$$

$$\begin{pmatrix} \psi_L \\ \psi_R \end{pmatrix} (x,y) = \sqrt{\frac{2}{\pi R}} \begin{pmatrix} \frac{1}{\sqrt{2}} \psi^{1,0}(x) + \psi^{1,n}(x) \cos \frac{ny}{R} \\ \psi^{2,n}(x) \sin \frac{ny}{R} \end{pmatrix}.$$

$$\begin{pmatrix} \xi_L(x,y=0) \\ \xi_R(x,y=0) \end{pmatrix}_{\text{zero mode}} = \sqrt{\frac{1}{\pi R}} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \xi^{1,0}(x) \\ 0 \end{pmatrix} \text{ at } y = 0.$$

$$\begin{pmatrix} \xi_L(x,y=\pi R) \\ \xi_R(x,y=\pi R) \end{pmatrix}_{\text{zero mode}} = \sqrt{\frac{1}{\pi R}} \begin{pmatrix} \cos \frac{\beta}{2} & \sin \frac{\beta}{2} \\ -\sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix} \begin{pmatrix} \xi^{1,0}(x) \\ 0 \end{pmatrix} \text{ at } y = \pi R.$$

$$\begin{pmatrix} \xi_{\pi 1} \\ \xi_{\pi 2} \end{pmatrix} = \begin{pmatrix} \cos \frac{\beta}{2} & -\sin \frac{\beta}{2} \\ \sin \frac{\beta}{2} & \cos \frac{\beta}{2} \end{pmatrix} \begin{pmatrix} \xi_L \\ \xi_R \end{pmatrix}.$$

The SM gauge bosons, 3rd generation of quarks and leptons, 2 Higgs fields and leptons are superpartners ξ_L their superpartners

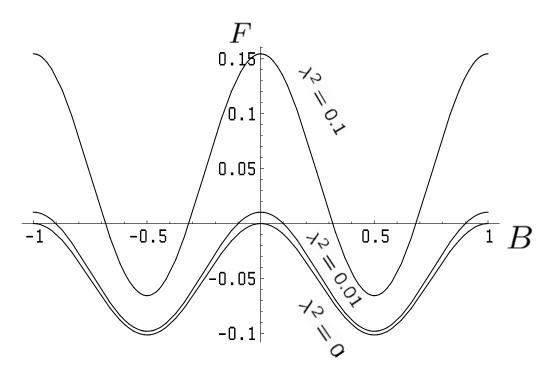
$$\begin{split} \mathcal{L}_{\pi\pi} &= \delta(\mathbf{p} - \pi \mathbf{R}) \frac{1}{2} \left[-\frac{\alpha}{\Lambda^3} T_{L,\pi_1}^{\dagger} T_{L,\pi_1} S^{\dagger} S - \frac{c_{\pi}}{\Lambda^3} T_{R,\pi_1}^{\dagger} T_{R,\pi_1} S^{\dagger} S \right]_{D} \\ - \mathcal{L}_{4}^{\text{mass}} &= \frac{1}{R^2} \left[\frac{\beta^2}{4\pi^2} \tilde{t}_{L,0}^{1*} \tilde{t}_{L,0}^{1} + \sum_{n=1}^{\infty} \left(n^2 + \frac{\beta^2}{4\pi^2} \right) (\tilde{t}_{L,n}^{1*} \tilde{t}_{L,n}^{1} + \tilde{t}_{L,n}^{2*} \tilde{t}_{L,n}^{2}) \right. \\ &\quad - \sum_{n=1}^{\infty} \frac{n\beta}{\pi} (\tilde{t}_{L,n}^{1*} \tilde{t}_{L,n}^{2} + \tilde{t}_{L,n}^{2*} \tilde{t}_{L,n}^{1}) + \sum_{n,m=1}^{\infty} \frac{2\alpha}{\pi^2} (-1)^{n+m} \tilde{t}_{L,n}^{1*} \tilde{t}_{L,m}^{1} \\ &\quad + \sum_{k=n}^{\infty} \frac{\sqrt{2}\alpha}{\pi^2} (-1)^{n} (\tilde{t}_{L,n}^{1*} \tilde{t}_{L,0}^{1} + \tilde{t}_{L,0}^{1*} \tilde{t}_{L,n}^{1}) + \frac{\alpha}{\pi^2} \tilde{t}_{L,0}^{1*} \tilde{t}_{L,0}^{1} + (L \leftrightarrow R) \right]. \\ &\alpha = c_{\tilde{t}} \pi \left(\frac{|\langle F_S \rangle|^2}{\Lambda^4} \right) \wedge R. \qquad c_{l} = c_{r} = c_{\tilde{t}} \quad \text{for simplicity} \end{split}$$

Up to the overall R^{-2} , L part of mass term is written in a basis of $(\tilde{t}_{L,0}^1, \tilde{t}_{L,1}^1, \tilde{t}_{L,2}^1, \cdots | \tilde{t}_{L,1}^2, \tilde{t}_{L,2}^2, \cdots)^T$ as

$$\begin{pmatrix} B^2 + F & -\sqrt{2}F & \sqrt{2}F & -\sqrt{2}F & \dots & 0 & 0 & 0 & \dots \\ -\sqrt{2}F & 1 + B^2 + 2F & -2F & 2F & \dots & -2B & 0 & 0 & \dots \\ \sqrt{2}F & -2F & 4 + B^2 + 2F & -2F & \dots & 0 & -4B & 0 & \dots \\ -\sqrt{2}F & 2F & -2F & 9 + B^2 + 2F & \dots & 0 & 0 & -6B & \dots \\ \hline 0 & -2B & 0 & 0 & \dots & 1 + B^2 & 0 & 0 & \dots \\ 0 & 0 & -4B & 0 & \dots & 0 & 4 + B^2 & 0 & \dots \\ 0 & 0 & 0 & -6B & \dots & 0 & 0 & 9 + B^2 & \dots \\ \hline 0 & 0 & 0 & -6B & \dots & 0 & 0 & 9 + B^2 & \dots \\ \hline \end{pmatrix} .$$

The eigenvalue equation

$$\frac{1}{\lambda^2 - B^2} + \sum_{n=1}^{\infty} \left(\frac{1}{\lambda^2 - (n+B)^2} + \frac{1}{\lambda^2 - (n-B)^2} \right) = \frac{1}{F}$$



Invariance under $B \rightarrow B + 1$, $B \leftrightarrow -B$.

$$B = \frac{\beta}{2\pi}, \qquad F = \frac{\alpha}{\pi^2} = \frac{c_{\tilde{t}}|\langle F_S \rangle|^2 R}{\pi \Lambda^3}.$$

The eigenvalue equation

$$\frac{1}{\lambda^2 - B^2} + \sum_{n=1}^{\infty} \left(\frac{1}{\lambda^2 - (n+B)^2} + \frac{1}{\lambda^2 - (n-B)^2} \right) = \frac{1}{F}$$

For
$$B=1/2$$
,
$$\frac{\pi\tan\pi\lambda}{\lambda}=-\frac{1}{F}.$$

The lightest top and stop masses

$$m_t^2 = |y_t|^2 v_2^2$$
, $m_{\tilde{t}}^2 = -\frac{3}{R^2 \pi^4} \left(\frac{1}{F} + \pi^2\right)$.

The n -th Kaluza-Klein top and stop masses

$$m_{t,n}^2 = \frac{n^2}{R^2}, \quad m_{\tilde{t},n}^2 \approx \frac{(n + \frac{1}{2})^2}{R^2}.$$

The upper bound to the lightest Higgs boson mass

$$m_{h^0}^2 \le m_Z^2 \cos^2 2\beta + \frac{3\sqrt{2m_t^4 G_F}}{2\pi^2} \ln \frac{(2m_{\tilde{t}})^2}{(\pi m_t)^2}$$

The summation over infinite numbers of Kaluza-Klein mode contributions converges.

The corrections of Kaluza-Klein modes to the lightest Higgs boson mass are independent of the compactification scale.

The lightest stop mass is R dependent. The eigenvalue can have a small value. Thus the mass splitting between zero-mode stop and top can be around 1 TeV even for a large R^{-1} .