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Preface



Motivation (I)



Motivation (II)

LHC is a hadron collider
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What we all know

� QCD is the quantum field theory of quarks and gluons. It
exhibits unbroken SU(3) non-abelian gauge invariance.

� QCD is renormalizable and works well in the ultraviolet. It
is asymptotically free.

� QCD has a perturbative coupling that grows in the infrared.
The theory generates its own dynamical scale, ΛQCD.

� QCD exhibits color confinement and has a mass gap.

Note: proving this point yields 106$.

� QCD is the theory of strong interactions.



Basics of perturbative QCD



Mass divergences: qualitative
discussion

� Fact: in quantum field theory, two kinds of divergences are
associated with the presence of massless particles.

� Infrared (IR): emission of particles with vanishing
four-momentum (λDB →∞);

� present in gauge theories only;
� present also when matter particles are massive (QED).

� Collinear (C): splitting of particles into parallel moving pairs
� present if all particles in the interaction vertex are massless.

� Origin: physical processes happening at large distances.

� Therapy: carefully sum over experimentally
indistinguishable configurations.



Mass divergences: example

Emission of a massless gauge boson

Singularities: 2p · k = 2p0k0(1− cos θpk ) = 0 ,

→ k0 = 0 (IR); cos θpk = 1 (C).

Note: p0 = 0 singularity will be integrable.



Mass divergences: analysis

� In covariant perturbation theory:

� pμ is conserved in every vertex;
� intermediate particles are generally off–shell;
� the emitting fermion is on–shell: it can propagate

indefinitely.

� In time-ordered perturbation theory:

� all particles are on–shell;
� energy is not conserved in the interaction vertices;
� the IR/C emission vertex conserves energy: it can be

placed at arbitrary distance.

� The matrix element is not suppressed at long distances.



Sickness and Therapy

� The sickness is serious. The S matrix does not exist in the
Fock space of quarks and gluons.

� No surprise ... quarks and gluons are not the correct
asymptotic states!

� Observe. Mass divergences are associated with the
existence of experimentally indistinguishable, energy
degenerate states.

� Physical detectors have finite resolution in energy and
angle.

� KLN Theorem. Physically measurable quantities (transition
probabilities, cross sections) are finite.

� Mass divergences cancel, after summing coherently over
all physically indistinguishable states.



KLN Theorem

� Take any quantum theory with hamiltonian H
� Let Dε(E0) be the set of exact eigenstates of H with
energies E0 − ε ≤ E ≤ E0 + ε, with ε �= 0.

� Let P(i → j) be the transition probability per unit volume
and per unit time between eigenstates i and j .

� Then the quantity

P(E0, ε) ≡
∑

i,j∈Dε(E0)

P(i → j)

is finite as m → 0 to all orders in perturbation theory

Note: in an asimptotically free theory m(μ)→ 0 as μ→∞.

Note: in QED (me �= 0) summing over final states suffices.



Strategy of PQCD (I)
Infrared Safety

� Compute at partonic level, with an infrared regulator (e. g.:
ε = 2− d/2 < 0), and at least one hard scale Q.

σpart = σpart

(
Q
μ

, αs(μ),

{
m (μ)

μ
, ε

})
.

� Select IR–safe quantities, with a finite limit when the IR
regulator is removed (ε → 0, m(μ)→ 0).

σpart = σpart

(
Q
μ

, αs(μ), {0,0}
)
+O

({(
m
μ

)p

, ε

})
.

� Interpret these partonic, inclusive quantities, expanded in
powers of αs(Q)� 1, as estimates of hadronic quantities,
valid up to O ((ΛQCD/Q)p) corrections.



Strategy of PQCD (II)
Factorization

� Initial state hadrons break IR safety
� Cancellation of IR divergences fails in QCD when summing

over final states only.
� The KLN theorem is not applicable when summing over

initial states (we don’t know the initial state wave function)

� Construct factorizable quantities, such that

σpart

(
m
μ

,
Q
μ

)
= F

(
m
μ

,
μF

μ

)
∗ σ̂part

(
Q
μ

,
μF

μ

)
+O

((
m
μF

)p)
.

� Absorb divergences into initial state distributions F .
� Compute finite hard partonic cross section σ̂part.
� Fold perturbative σ̂part with measured F .



IR Safety: Re+e−

Simplest example: the total cross section in e+e− annihilation.

� It is insensitive to long distances.
� It can be expanded in a small parameter, αs(Q2).
� Partons will give hadrons with probability one.

Compute:
σtot(q2) =

1
2q2

∑
X

∫
dΓX

1
4

∑
spin

|M(k1 + k2 → X )|2 .

Normalize:
Re+e− ≡ σtot (e+e− → hadrons)

σtot (e+e− → μ+μ−)

At tree level:
σ

(0)
tot =

4πα2

3q2 Nc

∑
f

q2
f → R(0)

e+e− = Nc

∑
f

q2
f .



Radiative corrections

� Concentrate on photon decay (tree level in QED).

� Introduce an IR regulator, d = 4− 2ε with ε < 0.

σtot(q2) =
1
2q2 Lμν(k1, k2)Hμν(p1, p2) =

e2μ2ε

2q4
1− ε

3− 2ε

(−Hμ
μ(q

2)
)

.

� Compute diagrams for the squared matrix element

� Summing over positions of the final state cut yields real
gluon emission and virtual gluon exchange corrections.



Real emission

Integration of three-particle phase space in d dimensions

[
Hμ

μ

](1,R)
=

∫
ddp ddk
(2π)2d−3 δ+(p2) δ+(k2) δ+((p + k − q)2)

[Hμ
μ

](1)
,

with y ≡ (1− cos θpk )/2 and z = 2k0/
√

s, gives

[
Hμ

μ

](1,R)
=

[
Hμ

μ

](0) K (ε)
αs

π
CF

∫ 1

0
dz dy

[
1

z1+2ε [y(1− y)]1+ε
+ . . .

]
.

One recognizes the IR pole, z → 0, and the two collinear poles,
y → 0,1. Integration yields a typical double pole,

[
Hμ

μ

](1,R)
=

[
Hμ

μ

](0) αs

π
CF

[
2
ε2

+
5
ε
− 5

3
π2 +

33
2

+O(ε)
]

.



Virtual exchange

� Virtual contributions are given
by the quark form factor

Dimensional regularization and QED gauge invariance imply

� One diagram gives the
complete answer



Cancellation

Result for the form factor (after renormalization!)

Γ(1) = −αs

4π
CF

(
4πμ2

−q2

)ε
Γ2(1− ε)Γ(1+ ε)

Γ(1− 2ε)

[
2
ε2

+
3
ε
+ 8+O(ε)

]
.

Note! (−q2 + iε)−ε = (q2)−ε e−iπε .

Finally: IR and collinear poles cancel.

σtot =
4πα2

3q2 Nc

∑
f

q2
f

(
1+

αs

π

3
4

CF +O(α2
s)

)
,

For SU(3), where CF = 4/3, the (classical) result is

Re+e− = Nc

∑
f

q2
f

(
1+

αs

π
+O(α2

s)
)

.



Soft approximation
Universality: soft emission factorizes form the Born amplitude

The exact amplitude probes spin and energy of hard partons

Aaμ
ij = g ta

ij u(p)
[
ε/(k)(p/ + k/)Γμ

2p · k − Γμ(p/′ + k/)ε/(k)
2p′ · k

]
v(p′) .

Neglecting k/, and using the Dirac equation, the soft amplitude
factorizes: a scale-invariant soft factor multiplies the amplitude
with no radiation.

Aaμ
ij

∣∣∣
soft

= g ta
ij

[
p · ε
p · k −

p′ · ε
p′ · k

]
Aμ

0 ,



Soft approximation
� The soft amplitude is gauge–invariant (it vanishes if ε ∝ k ).

� Soft gluon emission has universal characters.
� Long-wavelength gluons cannot analyze the short-distance

properties of the emitter (spin, internal structure), they only
detect the global color charge and the direction of motion

� The result generalizes to multiple gluon emission.

� The result generalizes to gluon emission from gluons.

� The soft approximation can be applied to virtual diagrams,
with some care (eikonal approximation).

� When kμ �
√

q2, ∀μ, one can neglect k2 with respect to
pi · k in denominators, as well as k in numerators.

� Beware: the approximation is not uniformly valid in
Minkowsky space! (May need to deform integration
contours, may break down).



Soft cross section

Soft gluon phase space also factorizes (hard partons do not
recoil). Therefore the cross section also factorizes.

σsoft
qq̄g = g2 CF σqq̄

∫
d3k

2|k|(2π)3
2p · p′

p · k p′ · k .

In the center-of-mass frame (q = 0) and in the soft
approximation the quark and the antiquark are still back to
back. One recovers

σsoft
qq̄g = σqq̄ CF

αs

π

∫ 1

−1
d cos θpk

∫ ∞

0

d |k|
|k|

2
(1− cos θpk )(1+ cos θpk )

.

Displaying the expected soft and collinear singularities.



Angular ordering
The soft approximation displays a general feature.

� Consider the gluon emission probability from a boosted qq̄
dipole (small θpp′).

dσsoft
qq̄g = dσqq̄CF

αs

π

d |k|
|k| d cos θk

dφk

2π

1− cos θpp′

(1− cos θpk )(1− cos θp′k )
.

� Split the positive definite emission probability in two terms,
assigned to the quark and the antiquark.

dσsoft
qq̄g = dσqq̄CF

αs

π

d |k|
|k| d cos θk

dφk

2π

1
2
(Wq + Wq̄) .

� Choose

Wq =
1− cos θpp′

(1− cos θpk )(1− cos θp′k )
+

1
(1− cos θpk )

− 1
(1− cos θp′k )

.



Angular ordering

The Radiation factors Wq and Wq̄ have important properties.

� Wq (Wq̄) is singular only when cos θpk → 1 (cos θp′k → 1).
� Wq and Wq̄ are not positive definite.
� The azimuthal average of Wq (with respect to the axis
defined by p) vanishes if θpk > θpp′ .

1
2π

∫ 2π

0
dφ Wq(φ) =

2
1− cos θpk

Θ(θpp′ − θpk ) ,

� It can be proven using

cos θp′k = cos θpk cos θpp′ + sin θpk sin θpp′ cosφ .

� Azimuthal averages are positive definite.
� Interpret as probability distributions for independent
emission from the quark and the antiquark.



Towards hadronization

Angular ordering generalizes to multiple emissions to leading
power in 1/N2

c .

� Emission is inside cones.
� Further emissions have
smaller cones.

� Hadronization is local in
phase space.

� Hadronization is approximately a
Markov chain.

� After branching daughter partons
have splitting probability.

� Leads to shower Monte Carlo’s.



Sterman-Weinberg jets

Can one construct less inclusive IR-C finite observables?
Prototype: Sterman-Weinberg jet cross section

� An event is a two-jet event iff ∃ two cones with opening angle δ,
such that all energy, up to at most a fraction ε, flows in the cones.

� All events are two-jet events at leading order.
� At O(αs) two-jet events have

� an IR gluon (emitted in any direction), or
� a collinear gluon (with any energy).

� Virtual corrections are two-jet events. Therefore, the
partonic two-jet cross section is finite.



Three-jet cross section

� At leading order (LO) one finds simply σ
(0)
2j (ε, δ) = σ

(0)
tot .

� At next-to-leading order one finds only two- or three-jet
events, so that

σ
(1)
2j (ε, δ) = σ

(1)
tot − σ

(1)
3j (ε, δ) ,

� σ
(1)
3j is easily computed at tree-level. The dominant

contributions as ε, δ → 0 are

σ
(1)
3j (ε, δ) = σ

(0)
tot CF

αs

π

[
4 log(δ) log(2ε) + 3 log(δ) +

π2

3
− 7

4

]
.

� Observe:
� The total cross section is dominated by two-jet events at

large q2 (asymptotic freedom for jets!).
� The angular distribution of two-jet events

dσ2j/d cos θ ∝ 1+ cos2 θ is typical of spin 1/2 quarks.



QCD history in the making: TASSO at PETRA “sees the

gluons” (1979!)



Event shapes
A further generalization: pick observables assigning equal
weights to events differing only by IR or C emissions.

� Given m partons, and the observable Em(p1, . . . , pm), let

dσ

de
=

1
2q2

∑
m

∫
dLIPSm |Mm|2 δ (e − Em(p1, . . . , pm)) ,

� Different final states contribute: at order αm−1
s

σ(e)
∣∣∣
O(αm+1

s )
=

∫
dσ

(R)
m+1 +

∫
dσ

(1V )
m + . . . .

� IR-C safety: cancellation is preserved if

lim
pμ

j →0
Em+1(p1, . . . , pj , . . .) = Em(p1, . . . , pj−1, pj+1, . . .) ,

lim
pμ

k →αpμ
j

Em+1(p1, . . . , pj , . . . , pk , . . .) = Em(p1, . . . , pj + pk , . . .) .



Event shapes: examples

Thrust

Tm = maxn̂

∑m
i=1 |pi · n̂|∑m

i=1 |pi|

� 0 < Tm ≤ 1
� Tm = 1: two back to back
pencil-like jets.

C parameter

Cm = 3− 3
2

m∑
i,j=1

(pi · pj)
2

(pi · q) (pj · q)

� 0 < Cm ≤ 1
� Cm = 0: two back to back
pencil-like jets.

� C = 3(λ1λ2 + λ1λ3 + λ2λ3)

Jet masses

ρ
(H)
m =

1
q2

⎛⎝∑
pi∈H

pi

⎞⎠2 � H: hemisphere defined by
thrust axis.

� ρ
(H)
m = 0: massless jet in H.



Event shapes: phenomenology

� At leading order distributions are δ(e), unlike data ...

� NNLO calculation recently completed

� At higher orders distributions are singular in the two-jet
limit, behaving as αn

s log
2n−1 e/e .

� Sudakov logarithms are tied to IR-C poles.
� They can be resummed to all orders.

� Moments of the distributions are finite.

� Great phenomenological relevance (for example:
determination of αs, study of hadronization corrections).

� Jet algorithms can be seen as particular event shapes.

� Generalizations exist to a hadron collider environment.



A sample fit of LEP data (Gardi and Rathsman) for the

jet mass ρH, with NLL resummation and power corrections.



Mesurements of αs(Q) from various processes, compared to

four-loop QCD (Bethke).



Perturbative QCD at hadron colliders



DIS: kinematics

Kinematic variables:

� q = k − k ′ → Q2 = −q2

� x = Q2

2p·q , y = p·q
p·k

� W 2 = (p + q)2 = Q2 1−x
x

e
e

�

p

Cross section (for electromagnetic DIS):

d2σ

dxdy
=

α2y
2Q4 Lμν(k , k ′)Hμν(p, q) =

4πα2

Q2

»
y F1(x , Q2) +

1− y
y

F2(x , Q2)

x

–

Bjorken scaling:

Q2 →∞ , with x finite :
∂Fi(x , Q2)

∂Q2 → 0

as expected for scattering on pointlike free fermions



DIS: parton model

Relativity and asymptotic freedom combine in the parton picture

zp

q�

p

� At large Q2, the hadron is a loosely
bound collection of partons.

� Parton scatterings do not interfere.
� Each parton is characterized by a

probability distribution in longitudinal
momentum, fq/H(z).

σ(p) =
X

q

e2
q

Z 1

0
dz fq/H(z) σ̂ (z p) ⇒ F2(x) = 2 x F1(x) =

X
q

e2
q x fq/H(x)

� The fast hadron is seen as a flattened disk with slowly
interacting constituents.

� The effective coupling at short distances is small.



DIS: radiative corrections

The parton picture survives radiative corrections.

Real emission Virtual corrections

� Inclusive final state: IR-C divergences cancel.
� One parton in the initial state: uncancelled collinear divergence.

Note: it must be so: kinematics is different.
� Reabsorb collinear divergence in the parton distribution.

Note: it is a long-distance effect!
� Parton distributions acquire scale dependence.



DIS: factorization

Factorization of initial state collinear singularities into parton
distributions can be proven to all orders in perturbation theory.

� Strategies:
� Use OPE and dispersion relations on the hadronic tensor
� Analyze DIS on a parton, define parton-in-parton distributions,

match divergences to all orders.

� Result:

F (H)
2 (x , Q2) =

X
a

Z 1

x
dξ fa/H(ξ, μF ) F (a)

2

„
x
ξ

,
Q
μF

; αs(μ)

«
+O

„
Λ2

Q2

«
� Interpretation:

� Parton distributions fa/H are universal, non-perturbative, depend
on μF but not on Q; they must be measured.

� Coefficient functions F (a)
2 are process-dependent, finite in

perturbation theory, depend on Q; they must be computed.



Factorization and evolution

Factorizations separate dynamics at different energy scales. They
lead to evolution equations. Solving evolution leads to resummations
of logarithms of the ratio of scales.

� Renormalization group logarithms.
Renormalization factorizes cutoff dependence

G(n)
0 (pi ,Λ, g0) =

n∏
i=1

Z 1/2
i (Λ/μ, g(μ)) G(n)

R (pi , μ, g(μ)) ,

dG(n)
0

dμ
= 0 → d logG(n)

R
d logμ

= −
n∑

i=1

γi (g(μ)) .

� Renormalization group evolution resums αn
s(μ

2) logn (Q2/μ2
)

into αs(Q2), and logn (sij/μ2
)
using anomalous dimensions γi .

Note: Factorization is the difficult step!



Parton evolution

� Collinear factorization logarithms.

Mellin moments of partonic DIS structure functions factorize

F̃2

(
N,

Q2

m2 , αs

)
= F̃2

(
N,

Q2

μ2
F

, αs

)
f̃
(

N,
μ2

F
m2 , αs

)

dF̃2

dμF
= 0 → d log f̃

d logμF
= γN (αs) .

� Altarelli-Parisi evolution resums collinear logarithms into evolved
parton distributions.

� Result: while parton distributions are not computable in
perturbation theory, their scale dependence is.

� In practice: evolution kernels are the coefficients of collinear
singularities in diagrams with parton splitting.



Altarelli-Parisi kernels

� The struck quark has momentum fraction z.
� Phase space integration is IR-C divergent
� The IR divergence is canceled by the virtual

correction, as z → 1.
� The collinear divergence gives the splitting

function: it is a distribution in z.

Define a plus distribution [g(z)]+ byZ 1

0
dz f (z) [g(z)]+ ≡

Z 1

0
dz

h
f (z)− f (1)

i
g(z)

The classic result for quark→ quark splitting is then

P(1)
qq (z) = CF

»
1 + z2

1− z

–
+

which must be generalized to all other parton→ parton splittings.



Altarelli-Parisi kernels

Parton evolution acts as a matrix of kernels on parton flavors.

∂qf (z, Q2)

∂ logQ2 =
αs

2π

Z 1

z

dy
y

»
Pqq

„
z
y

, αs(μ)

«
qf (y , Q2) + Pqg

„
z
y

, αs(μ)

«
g(y , Q2)

–
∂g(z, Q2)

∂ logQ2 =
αs

2π

Z 1

z

dy
y

"
Pgq

„
z
y

, αs(μ)

« X
f

qf (y , Q2) + Pgg

„
z
y

, αs(μ)

«
g(y , Q2)

#

Splitting functions are easily computed at leading order

P(1)
qg (z) =

1
2

“
z2 + (1− z)2

”
, P(1)

gq (z) =
1
2

„
1 + (1− z)2

z

«
,

P(1)
gg (z) = 2CA

„
z

[1− z]+
+

1− z
z

+ z (1− z)

«
+ δ(1− x)

„
11CA − 2nf

6

«
.

Their Mellin moments are the anomalous dimensions γN(αs)

Note: Splitting functions are known to three loops (!)



PDF’s and their evolution



DIS: a success story



Factorization for hadron colliders

A factorization formula for hadron-hadron scattering replicates the
reasoning of DIS, with two partons in the initial state.

σH(S, Q2) =
X
a,b

Z 1

0
dx1 dx2 fa/h1(x1, μF ) fb/h2(x2, μF ) bσa,b

P

“
x1x2S, Q2, μF

”
The universality of fa/h, with computable μF dependence, suggests a
strategy.

h

h

1

2

b

ax1

x2

� Choose a factorization scheme.
� Compute σ̂a,b

P (μ0) for process A.
� Measure σH(Q ∼ μ0) for process A.
� Determine fa/h(μ0).
� Evolve fa/h(μ) to the scale μ1.
� Compute σ̂a,b

P (μ1) for process B.
� Predict σH(Q ∼ μ1). for process B.



Factorization for hadron colliders?

Aμ =
(1, 0, 0, v)

[(z − vt)2 + (1− v2)(x2 + y2)]1/2

� Do soft gluons rearrange
partons before the collision?

� Is pdf universality lost?
� Are there uncancelled IR

divergences?

� As v → 1, Aμ does not vanish! However, Aμ ∝ ∂μ log |z − vt |
� Aμ is a pure gauge, Fμν vanishes as v → 1, except at z = t .
� Factorization proofs are hard for hadron- hadron scattering:

need to enforce gauge invariance.
� Uncancelled IR divergences are suppressed by Λ2/Q2.



Electroweak annihilation
Annihilation of QCD partons into electroweak final states is of
great interest and widely studied.

� Clean (qq̄ → μ+μ−) or interesting (gg → Higgs) final state.
� Relatively simple computationally.

� Completes the ‘trio’ of processes with an electroweak side.
� No initial-final state interference (‘few’ QCD legs).

� Therefore: computed to high accuracy: NNLO QCD, NNLL
soft resummation available.

� Many interesting physics measurements.
� Main W , Z production channel (possible luminometry).
� Dominant Higgs production channel (via top loop).
� Useful to constrain pdf’s: typically up/down from W±

production asymmetries.
� Access new physics channels: heavy gauge bosons,

contact interactions, Kaluza-Klein modes ...



EWA kinematics

Assume you require the production of an electroweak state S of
mass Q2. At Born level

S is produced by partons

S is moving in hadronic CM

Measure the rapidity y of S

or the pseudorapidity η

Parton momentum fractions
are then fixed

Q2 = ŝ = x1x2s

Qμ
cm =

(
(x1 + x2)

√
s,0,0, (x1 − x2)

√
s
)

y = 1
2 log

Q0
cm+Q3

cm

Q0
cm−Q3

cm
= 1

2 log
x1
x2

η = − log tan θcm

2

x1 =
√

Q2

s ey , x2 =
√

Q2

s e−y

The rapidity distribution of the state S gives direct access to
parton distributions at correlated values of momentum fraction.



EWA: tree level

The classic result for the parton model Drell-Yan cross section is

Q2 dσ

dQ2 =
4πα2

3Ncs

X
q

e2
q

Z 1

0

dx1
x1

Z 1

0

dx2
x2

fq/h1(x1) f q̄/h2(x2) δ

„
1− Q2

x1x2s

«

at fixed rapidity, defining τ = Q2/s

Q2 d2σ

dQ2dy
=

4πα2

3Ncs

X
q

e2
q fq/h1

`√
τ e

y ´
f q̄/h2

`√
τ e

−y ´
.

The W production cross section at LHC is similarly given by

σ (pp → W ) =
πτ

m2
W

X
ab

Kab

Z 1

τ

dx
x

fa/p (x) fb/p

“ τ

x

”
≡ π

m2
W

X
ab

Kab τ Lab(τ)

Substituting a typical small-x behavior fa/p(x) ∼ x−1−δ one finds that
σ grows at least as log s.



Higher orders: status
Inclusive QCD cross sections which are electroweak at tree level are
known to great accuracy.

� DIS structure functions: the best-known observable in PQCD.
� Analytic result at three loops (N3LO).
� Soft gluons corrections resummed at NNLL (‘almost’ N3LL).
� Solid results on power corrections (O(Λ2/Q2) terms).

� e+e− annihilation: complex observables, hard calculations.
� Total cross section (Re+e− ) known to four loops.
� Event shapes distributions known at NNLO (numerically).
� Soft gluon resummation at NLL.
� Power corrections (O(Λ/Q)!) important and well studied.

� Electroweak annihilation
� Inclusive cross sections known at NNLO.
� Soft gluon effects at NNLL. Power corrections at O(Λ2/Q2).
� New! Exclusive distributions available at NNLO.



Drell-Yan: rapidity distribution

NNLO rapidity distributions for Z, W± production at LHC
(Anastasiou et al.).

� Even for inclusive σ’s, 50− 100% QCD corrections are common.
� K -factors are not factors in general.
� Theoretical uncertainties are greatly reduced.



Higgs production: jet veto

NNLO rapidity distributions for Higgs production at LHC,

without and with jet veto (Catani, Grazzini).

� QCD corrections over 100% at central rapidity (not a K -factor).
� Jet veto selects Higgs from QCD background in WW decays.
� QCD corrections are reduced with jet veto.



Pointers to special topics



Parton Distribution Factories
The determination of PDF’s: a near-industrial effort.

� Strategy: global fits. Consider data from many different QCD
processes, machines, experiments.

� Data: DIS (γ, ν); Drell-Yan; prompt photon; jet production ...
� Positive: constraining; processes select parton combinations.
� Negative: must combine errors, data sets are incompatible.

� Method: constrained parametrizations.
� Select a functional form: fa/h(x , Q2

0) = xα(1− x)βP(x , γi).
� Impose symmetry and dynamical constraints, sum rules ...
� Fit to data with selected accuracy in PQCD (LO, NLO, ...)
� Apply precise evolution code.

� Players: CTEQ, MRST→ MSTW, NNPDF, Alekhin, Zeus, ...
� PDF uncertainties: a difficult statistical problem.

� Collaborations provide multiple sets; need inflated χ2.
� Radical approach by NNPDF: Monte Carlo replicas, neural

network parametrization.



The reach of LHC

� Large mass states are made
at large x and central
rapidities.

� Small x means limited Q2.

� Altarelli-Parisi evolution is up,
feeding from the left.

� Precise evolution codes are
needed.

� LHC will measure PDF’s on
its own.



Parton distributions: a sample

Valence quark PDF’s with uncertainties, log and linear scale (NNPDF)

Gluon PDF’s with uncertainties, log and linear scale (NNPDF)



Caveat emptor

� PDF sets used to compute standard
candle cross sections: W and Z
production, with PDF uncertainties.

� At LHC, expected uncertainties: a
few percent.

� A technical change by CTEQ in the
treatment of quark mass thresholds
(“ZM-VFS”→ “GM-ACOT”) moved
the cross section by 2.5σ.

� Explanation: smaller heavy quark
PDF’s by sum rules imply larger light
quark PDF’s (which make W ’s).

� More recent MRST fit reported to be
close to high value of CTEQ.

� NNPDF expected to catch up after
move to “GM-ACOT”.



A parton distribution interface



Order by order: LO
or: when is a problem ‘solved’?

Computing tree amplitudes in gauge theories is a nontrivial problem.

Quantum number management helps.

Atree(1, 2, . . . , n) = gn−2
X
ncp

Tr(Ta1Ta2 . . . Tan ) Atree(1, 2, . . . , n)

Atree(−,−, +, . . . , +) = i
〈12〉4

〈12〉〈23〉 . . . 〈n1〉

The problem has a recursive solution.

� Berends-Giele recursion relations 20 years old and still fastest.
� Twistor-inspired methods lead to new insights, new recursions (BCFW).
� Factorial complexity degraded to power law: tn ∼ n4.



Order by order: NLO
light after the bottlenecks

� Bottleneck #1: computing loop integrals
� Obstacles: analytic structure; tensor integral decomposition.
� State of the art: generic 5-points ‘standard’, 6-points ‘frontier’.
� Spectacular progress with twistor-inspired + unitarity techniques.

For gluons: factorial complexity degraded to power law: tn ∼ n9.

� Bottleneck #2: subtracting IR-C poles
� Combine (n + 1)-parton trees with n-parton one-loop amplitudes.
� Compute singular phase-space integrals for generic observables.
� General methods exist: slicing, subtraction, dipole subtraction.

� Bottleneck #3: interfacing with shower MC’s
� Practical usage of a theory calculation requires four steps.

ME → generator → shower → hadronization MC
� New problem at NLO: double counting of first IR-C emission.
� Methods available (MC@NLO, POWHEG ...), implementation in

progress.



Order by order: NNLO
deep in the dark bottlenecks

� Bottleneck #1: computing loop integrals
� Obstacles: analytic structure; tensor integral decomposition; a

basis of scalar integrals is not known.
� State of the art: only ‘nearly massless’ virtual 4-point amplitudes

computed (ingredients for NNLO jets).
� Only fully inclusive quantities with one particle in final state are

computed at NNLO.

� Bottleneck #2: subtracting IR-C poles
� Combine (n + 2)-parton trees, n + 1-parton one-loop amplitudes,

n-parton two-loop amplitudes.
� Several groups working on a general subtraction method.
� Only one calculation completed to date: NNLO e+e− → 3jets.

� Bottleneck #3: interfacing with shower MC’s

� Hic sunt leones.



Status
pp� n particles

complexity  [n]
1 32 54 6 87 9 10

Two-loop:
. Limited number of 2�1 processes
. No general algorithm for divs cancellation
. Completely manual
. No matching known 

Tree-level:
. Any process 2�n available 
. Many algorithms
. Completely automatized 
. Matching with the PS at NLL 

accuracy
 [loops]

0

1

2 One-loop:
.Large number of processes known up to 2�3
.General algorithms for divergences cancellation
.Not automatic yet (loop calculation) 
.Matching with the PS available for several processes 
(MC@NLO)  

fully exclusive

fully inclusive

parton-level



All orders: the boundaries of PQCD

Multi–scale problems can have large perturbative corrections of the
general form αn

s log
k
(

Q2
i /Q2

j

)
, with k ≤ n (single logs) or k < 2n

(double logs). Examples include

� Renormalization logs: αn
s logn (Q2/μ2

R

)
.

� Collinear factorization logs: αn
s logn (Q2/μ2

F

)
.

� High-energy logs: αn
s logn−2 (s/t).

� Sudakov logs in DIS : αn
s log2n−1 (Q2/W 2

)
.

in EWA processes: αn
s log2n−1 (1−Q2/ŝ

)
.

� Transverse momentum logs: αn
s log2n−1 (Q2

⊥/Q2
)
.

Note: Sudakov logs originate from mass singularities: they are
universal and can/must be resummed.



Beyond the boundaries of PQCD

� Factorization theorems apply up to non-perturbative corrections
suppressed by O (

(Λ/Q)p).
Impact: p is important to validate perturbative calculations.

� In the presence of several hard scales, power corrections can be
enhanced (the smallest scale dominates).
Example: DIS as x ∼ 1 ⇒ O `

Λ2/
`
Q2(1− x)

´´
.

� Power corrections can affect phenomenology, even at LHC.
Compare: compete with NLO (at LEP) or NNLO (at LHC) perturbative
corrections.

� All-order results in perturbation theory encode information on
the parametric size of power corrections.
Techniques: OPE, Renormalons, Sudakov resummations.



Sudakov resummation: facts
The problem: a large Sudakov logarithm L implies an expansion in
powers of αsL2, valid only if αsL2 � 1.
The answer: Sudakov logarithm can be computed to all orders in
perturbation theory: they exponentiate.

Some facts about the resummation:

� Non–trivial. Reorganizes perturbation theory in a predictive way.

X
k

αk
s

2kX
p

ckpLp → exp

24X
k

αk
s

k+1X
p

dkpLp

35 = exp
h
L g1(αsL)+g2(αsL)+αs g3(αsL)+. . .

i
� Predictive. With NLL resummation αs � 1 suffices to apply

perturbative methods. Scale dependence is reduced.
� Widespread. NLL available for main inclusive cross sections at

colliders (NNLL for processes which are EW at tree level).

� Non–perturbative aspects of QCD become accessible. Integrals
in the exponent run into the Landau pole.



Sudakov resummation: EWA

Threshold logarithms:

z = Q2/ŝ → 1»
logp(1− z)

1− z

–
+

→ logp+1 N

Factorization leads to resummation:

ω(N, ε) = |HDY|2 ψ(N, ε)2 U(N) +O(1/N) ⇒

⇒ bωMS (N) = exp

" Z 1

0
dz

zN−1 − 1
1− z

(
2

Z (1−z)2Q2

Q2

dμ2

μ2
A

h
αs(μ

2)
i

+ D
h
αs

“
(1− z)2Q2

”i )
+ FMS (αs)

#
+ O

„
1
N

«
.

� The functions A and D are known to three loops (almost N3LL).
� The expansion in towers of logs is well behaved to this order.



Z production at Tevatron

66 < Q < 116 GeV

CDF

CDF data on Z production compared with QCD predictions at fixed order (dotted), with

resummation (dashed), and with power corrections (solid) (A. Kulesza et al.).



Higgs production at LHC

Predictions for the qT spectrum of Higgs bosons produced via gluon fusion at the LHC,

with and without resummation (M. Grazzini).



Higgs production at LHC

Fixed-order and resummed K-factors for Higgs production at the

LHC (S. Catani and M. Grazzini).



Jets at Tevatron and LHC

� Jets are ubiquitous at hadron colliders
−→ the most common high-pt final state

� Jets need to be understood in detail
−→ top mass, Higgs searches, QCD studies, new particle

cascades

� Jets at LHC will be numerous and complicated
−→ t t̄H → 8 jets ... , underlying event, pileup ...

� Jets are inherently ambiguous in QCD
−→ no unique link hard parton→ jet

� Jets are theoretically interesting
−→ IR/C safety, resummations, hadronization ...



Signal and background jets

Generic SUSY cascade event

Standard model event with same

signature



t t̄ → 4 jets + lepton + /Et : a cartoon



t t̄ → 4 jets + lepton + /Et : real life at CDF



From hard partons to jets

Hard scattering provides us with high-pt partons initiating the jets. Jet
momenta receive several PT and NP corrections.

� Perturbative radiation + parton showering

−→ expensive: 5 · 102 p · y ∼ $5 · 107 at NNLO ...

� Universal hadronization, induced by soft radiation

−→ from hard scattering, as in DIS, e+e−

� Underlying event, colored fragments from proton remnants

−→ no perturbative control, large at LHC

� Pileup, multiple proton scatterings per bunch crossing

−→ experimental issue, up to 102 GeV per unit rapidity at LHC



Jet algorithms
� Requirements.

IR/C safe, for theoretical stability; fast, for implementation;
limited hadronization corrections.

� Algorithm structures.

� Cone. Top-down, intuitive, Sterman-Weinberg inspired.
−→ IR/C safety issues −→ SISCone

� Sequential recombination. Bottom-up, clustering, adapted
from e+e− collisions.

Metric: d (p)
ij ≡ min

“
k2p

t,i , k2p
t,j

”
Δy2ij +Δφ2

ij
R2 , d (p)

iB ≡ k2p
t,i .

Choices: p = 1: kt ; p = 0: Cambridge ; p = −1: Anti-kt .

� Recent progress.
� G. Salam et al.: FastJet, SISCone, Anti-kt ,

Jet Area, Jet Flavor, Hadronization.
� S. Ellis et al.: SpartyJet.



Stability of jet definitions



Safety of jet algorithms: a cartoon

Three hard partons



Safety of jet algorithms: a cartoon

Pick the hardest as seed



Safety of jet algorithms: a cartoon

Draw a cone



Safety of jet algorithms: a cartoon

Momentum sum gives new seed



Safety of jet algorithms: a cartoon

Draw a new cone



Safety of jet algorithms: a cartoon

It is stable: call it a jet



Safety of jet algorithms: a cartoon

No more partons: end



Safety of jet algorithms: a cartoon

There was a collinear splitting!



Safety of jet algorithms: a cartoon

Pick the hardest as seed



Safety of jet algorithms: a cartoon

Draw a cone



Safety of jet algorithms: a cartoon

Momentum sum gives a new seed



Safety of jet algorithms: a cartoon

Draw a new cone



Safety of jet algorithms: a cartoon

It is stable: call it a jet



Safety of jet algorithms: a cartoon

Erase the jet partons



Safety of jet algorithms: a cartoon

Pick the hardest remaining as seed



Safety of jet algorithms: a cartoon

Draw a cone



Safety of jet algorithms: a cartoon

Momentum sum gives a new seed



Safety of jet algorithms: a cartoon

It is stable: call it a jet



Comparing jet algorithms

A Les Houches compilation of jet algorithms, see

arXiv:0803.0678.



Unsafe jet algorithms

Unsafe algorithms correspond to theoretical predictions that become
meaningless beyond a given order.

σ = σ0

“
1 + c1αs + c2α2

s + . . .
”

. . . c2 = ∞ !

σ = σ0

„
1 + c1αs + K log

„
Λ

Q

«
α2

s + . . .

«
= σ0 (1 + (c1 + K )αs + . . .) .

IR-C sensitivity at NpLO destroys predictivity of Np−1LO calculation.

Impact depends on specific algorithm and observable.

� The inclusive jet cross section is least affected: δσ/σ ∼ 5% comparing
SIScone and Midpoint cone.

� Multi-jet observables can be severely affected.

� W + 2 jets existing NLO prediction is not applicable to Midpoint
cone algorithms.

� For jet mass studies, the overall normalization is affected.
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