

1970-15

Signaling the Arrival of the LHC Era

8 - 13 December 2008

Top Quarks at the LHC Experiments

Bobby S. Acharya ICTP & INFN Trieste Italy

TOP QUARKS AT THE LHC EXPERIMENTS

Bobby S Acharya (ICTP, Trieste & INFN Trieste)

Signaling The Arrival of the LHC Era, ICTP Trieste, Dec 2008

Plan of Talk

- Introduction to Top Quarks
- Top Production and Decay
- Recognizing Top Quarks
- Globally Commissioning ATLAS and CMS with Top Quarks
- Measuring the Top Quark Mass
- New Physics with Top Quarks.
- Emphasise Basic Ideas, will not overwhelm you with Analyses!

TOP QUARKS

- The Top Quark is the "up quark of the third generation"
- The most massive known elementary particle.
- Discovered at the Tevatron in 1994
- Since then, CDF and D0 have made precise measurements of its mass: $m_t = 172.6 \pm 0.8(stat.) \pm 1.1(syst.)$ GeV.
- Has strongest coupling to Higgs, $y_t \approx 1$.
- Gives largest correction the the Higgs mass in the Standard Model

- Thus relevant to the problem of EWSB as well as hierarchy problem.
- $\Gamma_t \approx 1.5 \text{GeV}$, so the top decays before hadronising.
- Decays almost always as $t \to bW$, since $|V_{td}|, |V_{ts}| \approx 10^{-3}$ and $|V_{tb}| \approx 1$.

PRODUCTION CROSS SECTIONS AT THE LHC

0

BOBBY SAMIR ACHARYA (ICTP, TRIESTE)

CROSS SECTIONS AS THE LHC

- At full Luminosity $(10^{34}cm^{-2}s^{-1})$ there will be 10^9 events/second
- This is a total x-section of roughly 10^{14} fb = 10^{-1} b
- These are mostly inelastic collisions.
- \bullet "Hard Physics Collisions" dominated by $gg \to g \to q \bar{q}$
- These "DiJet Events" have a x-section of around 10^{-5} b ie 10^5 /s.
- Electroweak production of W's (eg $q\bar{q} \rightarrow W$) has a x-section of roughly 2×10^{-7} b = 200 nb = 2×10^{8} fb eg 100 $W \rightarrow e\nu$ events/s.
- Z production is order 50nb.
- Production of Top Quarks is order 0.8 nb $\sim 10^6$ fb. Ten Top pairs every second!
- Every 100 pb^{-1} of data will contain around 83000 top pair events.
- Note: these numbers correspond to $\sqrt{s}=14 {\rm TeV}$
- If the LHC starts at 10TeV then the x-sections typically drop by a factor of few. The top x-section goes down by about two.

AS THE LHC STARTS

- At start up the instantaneous Luminosity will be much less, perhaps $(10^{31}cm^{-2}s^{-1})$.
- This means one $W \rightarrow e\nu$ event every 10 seconds.
- One $Z \to e^+e^-$ and $Z \to \mu^+\mu^-$ per minute.
- One top pair every two minutes.
- If LHC runs for about "three full months" at this Luminosity we will have about 100pb⁻¹ of data.
- Order 2 Million $W \rightarrow e\nu$ and $W \rightarrow \mu\nu$ events
- $\bullet~{\rm Order}~{\rm 200}~{\rm 000}~Z \rightarrow e^+e^-$ and $Z \rightarrow \mu^+\mu^-$ events
- Order 83 000 Top Pair events
- These events will provide a wealth of information for the LHC detectors.
- We will here focus on the ubiquity of the Top Quark events for the LHC experiments.

TOP PRODUCTION AT LHC

• Proceeds mostly via gluon scattering (85%) and $q\bar{q} \rightarrow \bar{t}t$ (15%).

• Also single top production via electroweak processes. About 0.3 nb

TOP PAIR DECAYS

- The physics of top decays: top mass, spin, couplings, FCNC decays (e.g. $t \rightarrow qZ$), W mass, W helicity, b-jets...
- There are (almost) always 2 b jets and 2 W bosons.

TOP PAIR DECAYS

- Top Pair events always contain two *b*-quarks and two *W*-boson intermediate states.
- The *b*-quarks hadronize into *B*-hadrons forming *b*-jets
- Each W-boson decays either leptonically $(Br(W \to l\nu) \approx 3/9 = 1/3)$ or hadronically $(Br(W \to ud) = Br(W \to cs) \approx 3/9)$
- There are thus three types of top pair decays:
- All hadronic no leptons in final state, $Br \approx (3/9 + 3/9)^2 = 4/9$.
- Semileptonic one lepton in final state. $Br \approx 2 \times 3/9 \times (3/9 + 3/9) = 4/9.$
- Dileptonic, $Br = (3/9)^2 = 1/9$

Recognizing Top Events at the LHC requires a good performance from all of the major components of the ATLAS and CMS detectors:

- Electrons reconstructed by matching tracks to EM Calorimeter deposits
- Muons reconstructed by matching tracks to Muon chamber hits
- Light quarks reconstructed as "Jets of energy" in the Hadronic Calorimeter"
- D-quarks reconstructed as Jets with displaced vertex
- Neutrinos reconstructed as Missing Transverse Energy

NO TOP QUARKS, NO NOTHING!

- Recognizing Top Quark events requires succesfully measuring Jets, Leptons and Missing Energy
- If Top Quarks are not seen in ATLAS or CMS (as we will see even with 10 pb⁻¹), then there will most likely be major problem(s) with the measurement of Jets and/or Leptons and/or Missing Energy.
- This might be calorimetry, tracking, triggering, reconstruction ...or combinations thereof.
- Most new physics scenarios require precise measurements of Jets, Leptons and Missing Energy
- Recognizing Top Quarks at the LHC with be a major milestone
- No new physics discovery will be taken seriously until tops are recognized
- Top measurements are a major step towards new physics

- We must be prepared to see top quarks as soon as possible at the LHC
- Will describe a simple, "quick" method which can be done with early data
- Marina will then describe this in much more detail tomorrow
- Once the existence of top quarks in Europe is established, one can go on to measure their properties
- Will outline the mass measurement and some connections to new physics.

- The All Hadronic Channel is "all jets" → huge combinatorial and QCD backgrounds. Initially, very difficult.
- The Dileptonic Channel is very CLEAN \rightarrow two isolated, high p_T leptons and missing E_T . But, two neutrinos \rightarrow top reconstruction difficult. Probably first x-section measurement here.
- The Semileptonic Channel \rightarrow most studied in the early phase of the LHC \rightarrow backgrounds suppressed by single isolated high p_T lepton plus missing energy plus four high p_T jets; both tops can be reconstructed.

- First evidence for top quarks with $10pb^{-1}$.
- Cross-section measurement with 100pb^{-1}
- First mass measurement with 100pb⁻¹; with 1fb⁻¹ will have GeV precision
- Beyond 1fb⁻¹ will study new physics eg FCNC top decays, $t\bar{t}$ resonances etc

TRIGGERING ON TOPS: ELECTRON TRIGGERS

TRIGGERING ON TOPS: JET TRIGGERS

BOBBY SAMIR ACHARYA (ICTP, TRIESTE)

Can determine Top Trigger efficiencies from data:

- Use tag and probe
- Consider all events passing a four jet plus E_T -miss trigger
- Ask how many of these also pass a high p_T , isolated lepton trigger?
- Though this also includes eg W + jet backgrounds, their trigger efficiency is similar to that of tops.
- Reverse the role of the triggers to determine the jet trigger efficiency.

Recognizing Tops in the Semileptonic Channel

- Initially focus on electronic and muonic top decays. (Taus more difficult)
- Successful b-tagging requires a very well aligned detector, which may not be feasible at the LHC startup. So, initially, consider analyses without b-tags
- For measuring the top mass precisely, *b*-tagging will be necessary.

BASIC TOP PAIR EVENT SELECTION

- Require event to pass triggers L1_EM20I, L2_e25i, EF_e25i or equivalent muon triggers mu20.
- A single isolated lepton (electron or muon) with $p_T > 20 \text{GeV}$.
- Require at least four jets with $P_T > 20 \text{GeV}$, and 3 jets with $p_T > 40 \text{GeV}$.
- Missing $E_T > 20 \text{GeV}$.
- Object definitions:
 - Electrons identified by inner tracker and calorimeters and reconstructed in $|\eta| < 2.5$. Electrons in $1.37 < |\eta| < 1.52$ vetoed. Isolation requirement $E_T < 6$ GeV in a cone $\Delta R < 0.2$ around electron.
 - 2 Muons reconstructed by inner detector and muon spectrometer. $|\eta| < 2.5$ and $E_T < 6$ GeV in ΔR cone of 0.2.
 - Use cone 0.4 jets.

RECOGNIZING TOPS AND WS

- Reconstruct top as the combination of three jets with highest total p_T
- W peak may be seen in the invariant mass plot of all pairs of jets.

• Can clearly see the Top Peak even with $10pb^{-1}$.

BACKGROUNDS

- Main backgrounds to $t\overline{t}$ in the semileptonic channel are:
 - W+jets (dominant)
 - single top
 - $I \rightarrow l^+l^- + jets.$
 - In Multijet QCD \rightarrow fake leptons and Missing E_T
 - **o** diboson WW, WZ, ZZ
- $\bullet\,$ Data driven methods required to compute the W and QCD multijet backgrounds
- Multijet QCD has a large cross-section and tiny efficiency very difficult to simulate .

DATA SIMULATION

- MC@NLO and HERWIG were used for $t\overline{t}$ production calculated at NLO at matrix level. CTEQ6M pdfs were used.
- ALPGEN used for W+0,1,2,3,4j. Only LO so have to be careful with normalisation data driven methods.
- QCD background has a large uncertainty strongly dependent on lepton fake rate. Can change cuts to strongly reduce this background.
- Full simulation of detector via GEANT 4.
- Divide data into two sets, treating one as MC (from which ϵ and N_{bkg} are obtained) and one as 'real data'.
- Normalise all results to 100pb^{-1} .

	Trigger eff (%)	Lepton eff (%)	$ \not\!$	Jet req. (I) eff (%)	Jet req. (II) eff (%)	Combined eff (%)
$t\bar{t}$ (electron)	52.9	52.0	91.0	70.7	61.9	18.2
$t\bar{t}$ (muon)	59.9	68.7	91.6	65.5	57.3	23.6

• Muon efficiency slightly higher.

FURTHER CUTS: SELECTION B

- Improve S/B ratio and purity by requiring two of the jets forming the top to be in a W mass window.
- W mass constraint: at least one of three dijet masses for the top candidate is within 10GeV of the reconstructed mass of the W.

Additional Cuts

- Can also require the top candidate to be in a top mass window, $141 < m_t < 189 {\rm GeV}.$
- It may happen that the barrel calorimetry is working better than the forward one, and expect central jets from top decays ⇒ use an |η| < 1 cut on top candidate jets.
- Explored also the $\cos\theta^*$ and M_{eff} variables for improving the S/B ratio.

INCLUDING B-TAGGING

- Every event has two b-quarks => there are a few options. No b-tags, 1 or 2 b-tags, 2 b-tags.
- Number of b-tagged jets in events:

- Require 1 or 2 b-tags on top of Selection A.
- W constraint now applied on the two non b-jets.
- Purity improved by ~ 4 , sig efficiency reduced by $\sim 2.$

B-TAGGING

• Top mass with 1 or 2 b-tags, with and without W-mass cut:

• Cross section can now be measured with any of these sets of cuts.

EFFECTS OF NEW PHYSICS

- Various possibilities for physics beyond the Standard Model.
- Supersymmetry, Large Extra Dimensions, heavy resonances, Technicolour..
- Often a lot of top activity, since new physics related to the hierarchy problem (top squark in SUSY, KK resonance in LED and Randall-Sundrum).
- Cross sections expected to be small of the order of few picobarns.
- Can have a few 100 pb in some extreme (optimistic) cases.
- How does the new physics affect our counting experiment?

EFFECTS OF NEW PHYSICS II

- Considered the effects of SUSY and also a heavy resonance Z' coupled to $t\bar{t}$.
- Efficiencies usually quite high, since very high p_T involved.
- For the Z', efficiency $\approx 2 \times$ efficiency for $t\bar{t}$
- However, the cross-section only a few $pb \implies$ number of events passing cuts $\approx 1\%$ of the number of $t\bar{t}$ events.
- SUSY:

	E	ectron ana	lysis	Muon analysis		
Event type	Tr	igger+Selec	ction	Trigger+Selection		
		W const.	m_t win		W const.	m_t win
SU1	53	9	1	64	12	2
SU2	10	2	0.5	13	3	0.7
SU3	108	22	4	124	26	4
SU4	1677	541	155	2141	700	199
SU6	29	5	0.6	35	6	0.6
SU8	27	5	0.6	33	6	0.8

SU4 Results

• SU4 is a very low mass SUSY model, ($\sigma \approx 270 pb$)

• The shape in the top quark candidate mass plot is very similar for SU4 and Standard Model backgrounds.

Calibrating the Light Jet Energy Scale Using Tops. Towards a Mass Measurement

- Again semileptonic channel, with same cuts as before, except all jets have $p_T > 40$ GeV, since below that jets not very well calibrated.
- Require exactly two b-tags.
- Use χ^2 method to reconstruct hadronic W, by minimising the following χ^2 :

$$\frac{(M_{jj}(\alpha_{E_{j_1}},\alpha_{E_{j_2}})-M_W^{PDG})^2}{(\Gamma_W^{PDG})^2} + \frac{(E_{j_1}(1-\alpha_{E_{j_1}}))^2}{\sigma_1^2} + \frac{(E_{j_2}(1-\alpha_{E_{j_1}}))^2}{\sigma_2^2}.$$

over all light jet pairs.

- Only keep candidates whose mass is withing $\pm 2\Gamma_{M_W}$ of M_W .
- Can obtain information on jet scale from α_1, α_2 .
- Resolution $\sigma_i^2 \sim E \times {\rm GeV} + 0.005 E^2$

CALIBRATING LIGHT JES USING TOPS

 So, top events can be used as an independent calibration of the Light JES (cf Z+jets etc)

TOP MASS

• Impose further cuts to improve S/B ratio. Variables defined in hadronic top rest frame:

$$X_{1} = E_{W}^{*} - E_{b}^{*} = E_{j1}^{*} + E_{j2}^{*} - E_{b}^{*} = \frac{M_{W}^{2} - M_{b}^{2}}{M_{top}},$$
$$X_{2} = 2E_{b}^{*} = \frac{M_{top}^{2} - M_{W}^{2} + M_{b}^{2}}{M_{top}}.$$

• Use $|X_1 - \mu_1| < 1.5\sigma_1, |X_2 - \mu_2| < 2\sigma_2.$

TOP MASS - RESULTS

• $m_{top} = 175.0 \pm 0.2 \text{GeV}$ (left), $m_{top} = 174.8 \pm 0.3 \text{GeV}$ (right).

• Statistical error shown. Systematics overleaf.

Systematic uncertainty	χ^2 minimisation method			
Light jet scale	0.2GeV/%			
b-jet energy scale	0.7GeV/%			
ISR/FSR	0.3 GeV			

- b-jet energy scale has more impact since light energy scale due to W boson mass constraint.
- b-jet scale to be determined from $Z \rightarrow b\overline{b}$ data, but since statistics low initially, use light jet scale together with a Monte Carlo correction term.
- So a 5% uncertainty on both Jet scales gives a $4.5~{\rm GeV}$ uncertainty in the top mass.

NEW PHYSICS WITH TOPS

- There are many new physics studies that can be done involving Top Quarks
- Eg recall Fabio's talk tt-invariant mass, V_{tb} .
- Here we will briefly mention Neutral Flavour Changing Top Decays and Multi Top Quark events
- FCNC Top Decays eg $t \rightarrow cZ$ predicted in many models of BSM physics.
- About 10^{-14} in Standard Model and 10^{-6} in MSSM.

FCNC TOP DECAYS

BOBBY SAMIR ACHARYA (ICTP, TRIESTE)

Multi Top Events and More

- Consider a supersymmetry model in which gluinos are lighter than squarks and in which a stop squark is the lightest squark.
- Then the gluino decays are dominated by $\tilde{g} \rightarrow \tilde{t}t \rightarrow tt\chi_0$
- So gluino pair production leads to events with "Four Tops plus Missing E_T " !
- Rather challenging to study this, since the four tops lead to a 12 fermion final state → a combinatorial nightmare!
- Such events are not just restricted to SUSY, but arise in all models with "Top Partners" eg Little Higgs, Warped Extra Dimensions.
- Some of this was discussed in other lectures.

SUMMARY

- The Importance of Recognizing Tops in the Early Data cannot be over-emphasised
- Can be done with as little as $10pb^{-1}$.
- Can determine $t\bar{t}$ production cross-section in the early stages of LHC running, with 100pb^{-1} of data.
- We can also determine the top mass, with the error down to 1GeV with $1 {\rm fb}^{-1}$.
- The main source of error is systematical, in particular the JES.
- More work needed on understanding backgrounds, especially fake leptons and Missing E_T in QCD, as well as measuring the JES (in particular b-jet scale).
- Once we have a good understanding of Tops at the LHC we can use them to study a variety of new physics possibilities.

QCD BACKGROUND?

- Poorly understood only at LO in generators.
- Data-driven methods will be used to determine the impact.
- Fake rate very important can only be studied properly with full simulation.
- Estimate from fully simulated di-jet sample.
- $pp \rightarrow b\overline{b}$ has $\sigma \approx 100 \mu b$. Many of these events will have high P_T fake leptons and poorly reconstructed P_T , providing a significant background to the $t\overline{t}$ signal.
- Fake electron 1×10^{-3} /jet, muon 1×10^{-5} /jet. Extra muons mostly from semi-leptonic B decays.
- Can deduce that QCD background smaller than W+jets.

DIFFERENTIAL CROSS-SECTIONS

• Top momentum and rapidity distributions.

- Invariant mass of $t\overline{t}$ useful for checking SM prediction and possibly detecting resonances.
- Reconstruct neutrino using M_W constraint, then reconstruct both tops. Naive method doesn't give a good fit to SM prediction \rightarrow use kinematic χ^2 fit to 2 tops and 2 Ws.
- Resolution effects important $(M_{tt}^{true} M_{tt}^{reco})/M_{tt}^{true}$ ranges from 5% to 9% in 200 850GeV range.

$t\bar{t}$ Mass

• Use variable bin size to reduce bin to bin migrations.

$d\sigma/dydp_T$

- Quantity interesting for new physics searches spin correlations.
- Measurement in top rest frame need to know p_T and y well.
- High purity needed \rightarrow require 2 b-tags. Find light jet pairs with 60GeV < M_{jj} <100GeV, combine with closest b-jet. The highest resulting P_T combination is the hadronic top candidate.

