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Standard Model

The definition of the Standard Model

• SU (3) × SU (2)L × U (1)Y gauge symmetry with appropriate
gauge coupling strengths

• Three generations of quarks, leptons and neutrinos with ap-
propriate masses and mixing angles

• Higgs boson doublet that breaks gauge symmetry to SU (3)×
U (1)Y
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Standard Model is not Complete

Fundamental Theorem of Particle Physics Research:
The Standard Model of particle physics is not complete, and it
is this incompleteness that motivates almost all particle physicists
to do particle physics.

How is the Standard Model incomplete? Indirectly, the Standard
Model is incomplete because we do not know several important
why questions that cannot be answered within the theory.
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Incomplete Standard Model: Some Why Questions

•Why three generations?

•What is the dark matter?

•Why is matter so much more copious than anti-matter?

•Why is the strong CP violating angle so small?

•Why is the electroweak scale so much smaller than the Planck
scale?

•Why is Quantum Mechanics valid?

•Why are there three spatial dimensions and one time dimen-
sion?

•Why is time so different?

•Why do the gauge couplings have their values, and appear to
merge at high energy?

•Why are there large hierarchies in the quark and lepton masses
and mixings?

•Why are neutrino masses so much smaller?

•Why does electroweak symmetry break?

• How do elementary particles get their masses?

• . . .
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Tests of the Standard Model

There are three main directions to go to test the Standard Model

• Rare/forbidden events (μ → eγ, p decay, etc.)

• Precision tests (ΓZ, mW/mZ, etc.)

• Direct tests (dσ/dml+l−, e
+e− → HZ, etc.)

We shall forgo the first method of rare/forbidden events, partly
because of time, and partly because it is a more uncertain exercise,
or rather less direct probe, when it comes to Higgs boson physics.
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Focus on the Higgs boson

When discussing tests of the SM there is no single issue that is
more more important or more answerable in the near term by the
LHC than ... the question of the Higgs boson.

There is no direct evidence for it. The SM is a speculative theory,
like all other theories we have that involve electroweak symmetry
breaking. Our tests of the SM discussion will have particular em-
phasis on testing the validity of the single Higgs boson assumption.

In other words, our primary interest to focus on observables sen-
sitivity to the existence of the SM Higgs boson.

This leaves us with three main areas of discussion:

• Precision Electroweak Analysis

• Higgs Hunting (mostly in experimental lectures)

• Robustness of SM Higgs Phenomenology

All of these issues will be discussed in these lectures.

But first, a review of the SM Higgs sector.
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Standard Model Higgs Sector I

The SM posits an SU (2)L complex doublet Φ (four degrees of
freedom) with hypercharge Y = 1/2. The bosonic lagrangian is

LΦ = |DμΦ|2 −m2|Φ|2 − λ|Φ|4 − 1

4
BμνB

μν − 1

4
Wa

μνW
a,μν

where

DμΦ =

(
∂μ + ig

τa

2
Wa

μ + i
g′

2
Bμ

)
Φ

The Higgs potential is

VΦ = m2|Φ|2 + λ|Φ|4
If m2 < 0 and λ positive the minimum of the Higgs potential is
away from the origin

H =
−m2

λ
≡ v√

2
This “vacuum expectation value” of the Higgs breaks the elec-
troweak symmetry:

SU (2)L × U (1)Y → U (1)EM

This gives rise to three broken generators, and therefore we have
three (massless) Goldstone bosons (φi) and one physical state (h)
making up the Higgs complex doublet:

Φ =
1√
2

(
0
v

)
+

1√
2

(
φ2 − iφ1

h− iφ3

)
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Standard Model Higgs Sector II

The φi Goldstone fields can be absorbed as longitudinal compo-
nents of the massive W± and Z bosons. (I.e., W and Z masses
require electroweak symmetry breaking.)

The fermions get mass via yuQHuR, ydQH∗dR, etc. interactions,
where y is the Yukawa coupling and mf = yv/

√
2.

The lagrangian of remaining h interacting with itself and SM gauge
fields and fermions is

L = −m2
h

2
h2 − μ

3!
h3 − η

4!
h4

+

[
m2

WWμW
μ +

m2
Z

2
ZμZ

μ

](
1 +

h

v

)2

−mff̄f

(
1 +

h

v

)

where v =
√
2〈H〉 	 246GeV, m2

h = 2λv2, μ = 3m2
h/v, and

η = 6λ.

This lagrangian dictates all relevant Feynman rules we will need
for the Higgs boson.
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Why the SM is better than the Trivial Model

Finding a theory that matches observables is not hard at all. Give
me any set of n observables {Oi} and I can give you this theory:
For every Oi we posit the reason Ri, which simply states that Oi

is true.

Why is the SM better than this Trivial Model? The interrelations
of symmetries and dynamics. The Lagrangian is the (usual) tool
by which we can turn these into observables.

O1 O2

O3

Om

Symmetries

Dynamics

Lagrangian
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Observables in terms of Observables I

If there are n free parameters of the theory, and m computable
and measurable observables, then we have m − n predictions to
test the theory (if observables are sufficiently “independent”):

O1,O2, · · · ,On

which can be computed from the n parameters {Pi}
Oexpt

i = Oth
i (P1, P2, . . . , Pn)

These equations then can be inverted to obtain the parameters in
terms of observables

Pi = Fi(Oexpt
1 ,Oexpt

2 , . . . ,Oexpt
n ).

(Ignoring potential degeneracy issues.)

Now, for the remaining observables

On+1,On+2, · · · ,Om

we have the unambiguous predictions

Oth
n+j(P1, P2, . . . , Pn).
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Observables in terms of Observables II

Actually, we have expressed observables in terms of observables:

Oth
n+j = Oth

n+j(F1( 
Oexpt), F2( 
Oexpt), . . . , Fn( 
Oexpt))

In practice, doing this analytically can be hard to do, and a χ2

analysis is conducted, where

χ2 =
∑

i

(Oexpt
i −Oth

i (

P ))2

(ΔOexpt
i )2

.

One lets all the parameters 
P vary until the best χ2 value is ob-
tained. If χ2/d.o.f. <∼ 1 the theory is compatible with the experi-
mental measurements.

Nevertheless, in these lectures I will emphasize “observables in
terms of observables” because it is pedagogically important and
because it is possible to do this analytically in the examples I
present.
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Tree-Level Analysis of SM

We analyze the electroweak at tree level, which can be described
by three parameters (in addition to the fermion masses):

L = L(g, g′, v)

where g is SU (2)L gauge coupling, g
′ is U (1)Y gauge coupling and

v is the vev of the Higgs field.

The applicable feynman rules are

ig√
2
γμPL

ig
c̄W

γμ

[
(T 3

f −Qf s̄
2
W )PL −Qf s̄

2
WPR

]
iēQfγμ

f

f̄

f

f̄

μ−

ν̄

Aμ

Zμ

W−
μ

where c̄W , s̄W and ē are merely short-hand expressions for combi-
nations of Lagrangian parameters:

ē ≡ gg′√
g2 + g′2

, c̄W =
g√

g2 + g′2
, s̄W =

g′√
g2 + g′2
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Tree-Level Observables

Exchanging {g, g′, v} set for {e, s, v} one finds

α̂ =
e2

4π
Coulomb potential

ĜF =
1√
2v

muon decay

m̂2
Z =

e2v2

4s2c2

m̂2
W =

e2v2

4s2

ŝ2
eff = s2

Γ̂l+l− =
v

96π

e3

s3c3

[(
−1
2
+ 2s2

)2

+
1

4

]

The LHS are all observables/measurements.
The RHS are all theory predictions in terms of {e, s, v}.
s2

eff is determined from

ÂLR =
Γ(Z → e+

Le−L)− Γ(Z → e+
Re−R)

Γ(Z → e+
Le−L) + Γ(Z → e+

Re−R)
=
(1/2− ŝ2

eff)
2 − ŝ4

eff

(1/2− s2
eff)

2 + ŝ4
eff
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Measurements

α̂ = 1/137.035999911(46) (PDG)

ĜF = 1.16637(1)× 10−5 (PDG)

m̂2
Z = 91.1875± 0.0021GeV (LEP)

m̂2
W = 80.410± 0.032GeV (LEP,Tevatron)

ŝ2
eff = 0.23098± 0.00027 (SLAC)

Γ̂l+l− = 83.989± 0.100MeV (LEP)

Γl+l− obtained from ΓZ, Rl = Γhad/Γl and σhad at LEP:

σhad =
12π

m2
Z

ΓhadΓl

Γ2
Z

=
12π

m2
Z

Rl
Γ2

l

Γ2
Z

=⇒ Γl = m̂ZΓ̂Z

√
σ̂had

12πR̂l

These are six measurements to be explained by only three param-
eters.
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Pause for a Question

Does the Standard Model predict the correct W mass?

This is mostly a vacuous question in isolation. The answer is yes.

m̂2
W =

1

4

e2v2

s2

An infinite number of combinations of e, s and v can solve this
equation.

A more meaningful question: Can the free parameters of the

Standard Model be adjusted to predict all the observables com-

patible with observations?

This question is to be answered by a χ2 analysis

χ2(e, s, v) =
6∑

i=1

(Oexpt
i −Oth

i (e, s, v))
2

(ΔOexpt
i )2

where the three parameters are varied to see if values can be found
that match all six observables under consideration.
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A Simplified Analysis I

Of the six observables under consideration, historically three were
measured extraordinarily well (α, GF and mZ) and served as in-
puts to the predictions of other observables. Let’s do that here.

Inverting the lagrangian parameters and three well-measured ob-
servables, one finds

e2 = 4πα̂

v2 =
Ĝ−1

F√
2

s2 =
1

2
− 1

2

√
1− 4x̂2 where

πα̂√
2ĜFm̂Z
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A Simplified Analysis II

Now, use these to rewrite the remaining observables in terms of
these first three:

m̂2
W = π

√
2Ĝ−1

F α̂

(
1−

√
1− 4πα̂√

2ĜFm̂2
Z

)−1

ŝ2
eff =

1

2
− 1

2

√
1− 4πα̂√

2ĜFm̂2
Z

Γ̂l+l− =

√
2ĜFm̂3

Z

12π

⎧⎨
⎩
(
1

2
−
√
1− 4πα̂√

2ĜFm̂2
Z

)2

+
1

4

⎫⎬
⎭

Substitute in experimental values to make predictions:

Prediction Deviation
m̂W 80.939± 0.003GeV ∼ 17σ
ŝ2

eff 0.21215± 0.00003 ∼ 70σ

Γ̂l+l− 84.834± 0.012MeV ∼ 8σ
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Is Standard Model ruled out?

Of course not. But, we do not know that for sure without doing
the next order computation. We can suspect that there are large
corrections (compared to what? to experimental uncertainty) to
the previous analysis.

ΔO
O ∼ g2

4π2
∼ 1.2%

and

mtree
W − m̂W

m̂W
∼ 0.7%

ŝ2
eff − s2

eff,tree

ŝ2
eff

∼ 8.2%

Γtree
l+l− − Γ̂l+l−

Γ̂l+l−
∼ 1.0%

Why is s2
eff deviation so large? Very sensitive to α corrections

Δα

α
	 1/129− 1/137

1/137
= 6.2%
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Methods of establishing Standard Model

In this lecture we focus on the class of corrections that arise
solely from the self-energy corrections of the γ, W±, and Z vector
bosons. Restricting our analysis to this class of corrections enables
us to do something complete and meaningful in the short time we
have together.

A full-scale renormalization of the SM with all corrections ex-
plicitly calculated is a significantly more time-consuming project
without significantly enhancing the conceptual learning.
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Vector-Boson Self-Energies

By convention the one-loop corrections to the vector boson self-
energies

Vμ V ′
μ

q −→

is of the form

i[ΠV V ′(q
2)gμν −ΔV V ′(q

2)qμqν].

Only the ΠV V ′ piece of the self-energies matters for our analysis
since the qμ part of the second term is dotted into a light-fermion
current and is zero by the Dirac equation, since the corresponding
fermion masses is well-approximated to be zero:

qμJ light fermion
μ → f̄γμqμf → f̄mf → 0.

The way the self-energies are defined, they add to the vector boson
masses by convention:

m2
V → m2

V + ΠV V (q
2 = m2

V )
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Photon Self-Energies

Because the photon is massless we know that Πγγ(0) = 0 and
ΠγZ(0) = 0, and so we do not have to compute them.

Caveat: There is one subtlety to keep in mind. ΠγZ(0) is not
zero when the W± bosons is included in the loop. This is spe-
cial to the W± bosons (gauge degree of freedom partners of the
W 3). In new physics scenarios (e.g., supersymmetry) there are no
additional one-loop contributions to ΠγZ(0), and it is usually ap-
propriate in analyses of beyond-the-SM contributions to precision
EW observables to ignore it.

Our results when we are done will be of direct use for oblique
analysis of physics beyond the SM, but as for SM a more com-
plete analysis is needed, including taking into account vertex cor-
rections.
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Z and W Masses

The computation of the Z and W masses is straightforward. The
resulting theoretical prediction of mZ and mW in terms of the
lagrangian parameters and the one-loop self-energy corrections is

(m̂Z)
th =

e2v2

4s2c2
+ ΠZZ(m

2
Z)

(m̂W )
th =

e2v2

4s2
+ ΠWW (m

2
W )
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Computing α

We next compute the theory prediction for α. It sounds odd to use
the words “theory prediction of α” since we often are sloppy in our
wording (or thinking) and view α as just a coupling. In reality, it is
an observable defined in the Thomson limit of Compton scattering
and probes the Coulomb potential at q2 → 0:

+
Aμ Aμ Aμ

which is proportional to

−i
4πα̂

q2

∣∣∣∣
q2→0

=
−ie2

q2

[
1 +

Πγγ(q
2)

q2

]
q2→0

If we define

Π′γγ(0) ≡ lim
q2→0

Πγγ(q
2)

q2

then we can write the theory prediction for α as

(α̂)th =
e2

4π

(
1 + Π′γγ(0)

)
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Muon Decay

The muon decay observable ĜF is computed from the lifetime of
the muon

μ− W−
+

which is proportional to ĜF/
√
2. This amplitude is then used to

compute the muon lifetime

τ−1
μ =

Ĝ2
Fm5

μ

192π3
K(α, me, mμ, mW )

where the function K is mainly a kinematics function and can be
obtained from the electroweak chapter in the PDG. The theory
prediction for ĜF is

(ĜF )
th

√
2

=
g2

8m2
W

[
1 + iΠWW (q

2)

( −i

q2 −m2
W

)]
q→0

=
1

2v2

[
1− ΠWW (0)

m2
W

]
.
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Computation of ŝ2
eff I

The observable associated with ŝ2
eff is a little trickier than the other

ones. For one, there are many different types of ŝ2
eff observables,

depending on the final state fermion. We have defined ŝ2
eff to be the

observable associated with the left-right asymmetry of Z decays
to leptons. We assume universality of the leptons.

Al
LR =

σL − σR

σL + σR
≡ c2

L − c2
R

c2
L + c2

R

where at tree-level the cL and cR couplings are defined by

iγμ(cLPL + cRPR)
f

f̄
Zμ

and

cL =
e

sc
(T 3 −Qs2) and cR = −−eQs2

sc
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Computation of ŝ2
eff II

The definition of ŝ2
eff is chosen such that observable Âl

LR is written
in terms of ŝ2

eff using the tree-level expression above with s2 → ŝ2
eff.

Compute the one-loop shifts in cL and cR. Neglect all ΠZZ contri-
butions since they will only affect the overall factor of cL and cR

which cancels. On the other hand, the Z − A mixing self-energy
does contribute to the cL and cR couplings:

Zμ

fL,R

f̄L,R
Zμ Aμ

fL,R

f̄L,R

+

where

cL =
e

sc
(T 3 −Qs2) + iΠγZ(m2

Z)

(−i

m2
Z

)
(eQ)

=
e

sc

[
T 3 −Q

(
s2 − sc

ΠγZ(m2
Z)

m2
Z

)]

cR =
−eQs2

sc
+ iΠγZ(m2

Z)

( −i

m2
Z

)
(eQ)

= −eQ

sc

[
s2 − sc

ΠγZ(m2
Z)

m2
Z

]
.
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Computation ŝ2
eff III

The above cL and cR expressions are exactly the same as the
tree-level expressions except s2 → s2 − scΠγZ(m

2
Z)/m

2
Z in the

numerator. Thus, at the Z-pole

(ŝ2
eff)

th = s2 − sc
ΠγZ(m

2
Z)

m2
Z

where ÂLR =
(1/2− ŝ2

eff)
2 − (ŝ2

eff)
2

(1/2− ŝ2
eff)

2 + (ŝ2
eff)

2
.
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Computation of Γ̂l+l− (I)

Now we compute Γ̂l+l− from

Zμ

+
Zμ Aμ Zμ Zμ

+

The theoretical prediction for this observable in terms of indepen-
dent lagrangian parameters and one-loop self-energies is

(Γ̂l+l−)
th =

ZZ

48π

e2

s2c2
m̂Z

[(
−1
2
+ 2(ŝ2

eff)
th

)2

+
1

4

]

Recall that ΠγZ had the effect of just putting s2 → (ŝ2
eff)

th into
the numerator of the cL and cR expressions. The m̂Z comes as a
kinematical phase space mass of the Z decay.
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Computation of Γ̂l+l− (II)

ZZ is a wavefunction residue piece. To compute it, start with
ΠZZ(q

2), a self-energy that when resummed affects the Z boson
propagator in a simple way

Resummed Propagator −→ Pμν
Z (q2) =

−igμν

q2 −m2
Z − ΠZZ(q2)

.

But,

ΠZZ(q
2) = ΠZZ(m

2
phys) + Π′ZZ(m

2
phys)(q

2 −m2
phys) + · · ·

The mass of the Z is defined to be the position of the real part of
the pole of the propagator. In the neighborhood of q2 = m2

phys

q2 −m2
Z −ΠZZ(q2) = q2 −m2

Z − ΠZZ(m2
phys)− Π′ZZ(m2

phys)(q
2 −m2

phys) + · · ·
= (q2 −m2

phys)(1− Π′ZZ(m2
phys)) + · · ·

Therefore, in the neighborhood of q2 = m2
phys the Z propagator

can be written as

−igμν

(q2 −m2
phys)(1− Π′ZZ(m

2
phys)

=
−iZZgμν

(q2 −m2
phys)

where

ZZ = 1 + Π′ZZ(m̂Z) + higher order terms
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Computation of Γ̂l+l− (III)

At this point, we have all factors need to compute Γ̂l+l−.

Keep in mind a standard approximation for Π′ZZ(m
2
Z):

Π′ZZ(m
2
Z) =

ΠZZ(m
2
Z)− ΠZZ(0)

m2
Z

although it is not needed given the many good numerical tools
available now. Nevertheless, I will use it at times.

Sometimes I will also utilize the variable δZ which is defined as
ZZ = 1 + δZ, where

δZ = Π′ZZ(m
2
Z) 	

ΠZZ(m
2
Z)− ΠZZ(0)

m2
Z

=
ΠZZ(m

2
Z)

m2
Z

− ΠZZ(0)

m2
Z
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Reflection Pause

Where we are at: We now have written all of our observables in
terms of lagrangian parameters and Π functions (one-loop correc-
tions).

Usual next step: Construct χ2 function of all relevant observables
in terms of the input parameters, and fit.

Our next step: Let’s now do analytic inversions write parameters
in terms of observables, and ultimately observables in terms of
observables. Often this step is not possible in practice to do ana-
lytically. Works here due to relative noncomplexity of one-looop
self-energy corrections.

Why this analytic step? We will see infinities cancel automati-
cally when we write observables in terms of observables, and per-
haps provide a different perspective about the infinities that sup-
posedly afflict our theories.
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The troublesome case of α̂ (I)

Before we do those calculations, we need to say a few more things
about the α̂ observable. It is an unusual observable among our
list, because it is obviously incalculable. Recall from before that
we found

e2 =
4πα̂

1 + Π′γγ(0)

The problem is with Π′γγ(0), which requires us to know the result
of the photon self energy as q2 → 0:

q2 → 0

had
Aμ Aμ

Of course we know from the beginning of this section that

Πγγ(q
2)→ q2B as q2 → 0,

whereB is some constant. There is no reason for B to be zero, and
so there is no reason for the derivative of the self-energy Π′γγ(0)→
B to be zero. Unfortunately, however, it is not calculable.
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The troublesome case of α̂ (II)

The incalculability of Π′γγ(0) threatens to derail our precision elec-
troweak analysis. However, it has been known for some time now
that we can get at this value by using a combination of theory
tricks and experimental data. The first thing we do is to rewrite
Π′γγ(0) by adding and subtracting the self-energy at the higher
scale q2 = m2

Z:

Π′γγ(0) = Re
Πγγ(m

2
Z)

m2
Z

−
[
ReΠγγ

m2
Z

− Π′γγ(0)

]
The first term is calculable as computations are done at the scale
q2 = m2

Z where all interactions are perturbative in the SM. The
two terms in the bracket are not calculable, but we will give it a
name Δα(mZ). There are three main contributions to Δα(mZ):

Δα(mZ) = Δαl(mZ) + Δαtop(mZ) + Δα
(5)
had(mZ)

where

Δαl(mZ) = 0.03150 with essentially no error

Δαtop(mZ) = −0.0007(1) mt dependent but negligible

Δα
(5)
had = incalculable light hadrons contributions
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The troublesome case of α̂ (III)

Fortunately, there is a way to measure Δα
(5)
had. From the optical

theorem and the methods of analytic continuation, one finds that

Δα
(5)
had = −

αm2
Z

3π

∫ ∞

4m2
π

Rhad(q
2)dq2

q2(q2 −m2
Z)

where

Rhad(q
2) =

σhad(q
2)

σl+l−(q2)
.

Therefore, to get a numerical value for Δα
(5)
had one must integrate

over the experimental hadronic cross-section over a wide energy
range.

As soon as q2 is significantly above ΛQCD the theoretical cross-
section can be used without concern. However, for lower q2 (lower
than about 5GeV in practice), only the experimental data can be
used.

There are numerous experiments that contribute data for this inte-
gral in differing energy bins, and it is a challenge to understand all
the systematics and statistical errors that go into the final number

for Δα
(5)
had.
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Experimental Determination of Δα
(5)
had

Many groups have gone through this difficult exercise and there
are many different values obtained. The one the LEP Electroweak
Working Group has been using is by Burkhardt and Pietrzyk, who
conclude that

Δα
(5)
had = 0.02761± 0.0036.

Wewill now trade in the incalculable α̂ for the calculable/measured
α̂(mZ), which is related to the lagrangian parameters and Π’s by

α̂(mZ) =
α̂

1−Δα(mZ)
=

e2

4π

[
1 +

Πγγ(mZ)

m2
Z

]

Always remember, α̂(mZ) is an observable, which is a meaningful
combination of many different experiments (Thomson scattering
cross-section plus integration over Rhad(q

2)), and its experimental
value is

1

α̂(mZ)
= 128.936± 0.046.
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Update of Δα data scan

ρ,ω,φ Ψ’s Υ’s

0

1

2

3

4

5

6

7

s in GeV

Bacci et al.
Cosme et al.
PLUTO
CESR, DORIS
MARK I
CRYSTAL BALL
MD-1 VEPP-4
VEPP-2M ND
DM2
BES 1999
BES 2001BES 2001
CMD-2 2004
KLOE 2005

Burkhardt, Pietrzyk 2005

15%  5.9%  6%  1.4% 0.9%

rel. err. cont.
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Parameters in terms of Observables (I)

As for determining v2 from observables, we can get it directly and
simply from the ĜF equation

v2 =
1√
2ĜF

[
1− ΠWW (0)

m2
W

]
.

At this point we have e2 and v2 in terms of α̂(mZ), m̂Z and ĜF ,
but we still do not have the lagrangian parameter s2 in terms of
those three key observables. To do this, we need to go to the
theory prediction equation for m̂Z and solve for s2.

m̂2
Z =

e2

4s2c2
v2 + ΠZZ(m

2
Z) −→ s2c2 =

e2v2

4

[
1

m̂2
Z − ΠZZ(m2

Z)

]
.

After plugging in our previously obtained expressions for e2 and
v2 in terms of observables we get after some algebra

s2c2 =
πα̂(m̂2

Z)√
2ĜFm̂2

Z

(1 + δS)

where

δS =
ΠZZ(m

2
Z)

m2
Z

− ΠWW (0)

m2
W

− Πγγ(m
2
Z)

m2
Z

.

37



Parameters in terms of Observables (II)

A convenient definition that I will sometimes use is

ŝ2
0ĉ

2
0 =

πα̂(m̂2
Z)√

2ĜFm̂2
Z

.

With this definition

s2 = ŝ2
0 +

ŝ2
0ĉ

2
0

ĉ2
0 − ŝ2

0

δS.

We now have expressions for each of the lagrangian parameters in
terms of the three exceptionally well-measured observables

{m̂Z, α̂(mZ), ĜF}
and the self-energy correction Π’s and are ready to directly com-
pute the theoretical prediction for each of the remaining observ-
ables.

38



Computation of Observables (analytic)

After some more algebra, which the student should do him/herself,
here are the answers:

(m̂W )
th =

πα̂(m̂2
Z)√

2ĜF ŝ2
0

[
1− Πγγ(m

2
Z)

m2
Z

− c2
0

c2
0 − s2

0

δS − ΠWW (0)

m2
W

+
ΠWW (m

2
W )

m2
W

]

(ŝ2
eff)

th = ŝ2
0 +

s2
0c

2
0

c2
0 − s2

0

[
ΠZZ(m

2
Z)

m2
Z

− ΠWW (0)

m2
W

− (c2
0 − s2

0)

s0c0

ΠγZ(m
2
Z)

m2
Z

− Πγγ(m
2
Z)

m2
Z

]

(Γ̂l+l−)
th = Γ̂0

l+l−

[
1− as2

0c
2
0

c2
0 − s2

0

ΠZZ(m
2
Z)

m2
Z

+

(
1 +

as2
0c

2
0

c2
0 − s2

0

)
ΠWW (0)

m2
W

+as0c0
ΠγZ(m

2
Z)

m2
Z

− ΠZZ(0)

m2
Z

+ a
s2

0c
2
0

c2
0 − s2

0

Πγγ(m
2
Z)

m2
Z

]

where

a =
−8(−1 + 4s2

0)

(−1 + 4s2
0)

2 + 1
	 0.636.
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Computation of Observables (numerical)

In summary, the theoretical predictions for ŝ2
eff, m̂W and Γ̂l+l− can

be rewritten as

(ŝ2
eff)

th = ŝ2
0 − (0.328)

Πγγ(m
2
Z)

m2
Z

− (0.421)
ΠγZ(m

2
Z)

m2
Z

−(0.328)ΠWW (0)

m2
W

+ (0.328)
ΠZZ(m

2
Z)

m2
Z

(m̂W )
th = m̂0

W + (17.0GeV)
Πγγ(m

2
Z)

m2
Z

+ (17.0GeV)
ΠWW (0)

m2
W

+(40.0GeV)
ΠWW (m

2
W )

m2
W

− (57.1GeV)
ΠZZ(m

2
Z)

m2
Z

(Γ̂l+l−)
th = Γ̂0

l+l− + (17.5MeV)
Πγγ(m

2
Z)

m2
Z

+ (22.5MeV)
ΠγZ(m

2
Z)

m2
Z

+(101MeV)
ΠWW (0)

m2
W

− (83.9MeV)
ΠZZ(0)

m2
Z

− (17.5MeV)
ΠZZ(m

2
Z)

m2
Z

where

ĉ2
0ŝ

2
0 =

πα̂(m2
Z)√

2ĜFm̂Z

, (m̂0
W )

2 =
πα̂(m2

Z)√
2ĜF ŝ2

0

Γ̂0
l+l− =

α̂(m2
Z)m̂Z

12ŝ2
0ĉ

2
0

[(
−1
2
+ 2ŝ2

0

)2

+
1

4

]
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Example of Cancelation of Infinities

Let’s compute the contributions to precision EW observables from
one-loop fermion self-energies to the vector bosons.

Repeatedly come across what are usually called Passarino-Veltman
functions. There are several conventions for Passarino-Veltman
functions in use. We’ll use (D. Pierce et al.):

16π2μ4−n

∫
dnq

i(2π)n

1

q2 −m2 + iε
= A0(m

2)

16π2μ4−n

∫
dnq

i(2π)n

1

[q2 −m2
1 + iε][(q − p)2 −m2

2 + iε]
= B0(p

2, m2
1, m

2
2)

16π2μ4−n

∫
dnq

i(2π)n

qμ

[q2 −m2
1 + iε][(q − p)2 −m2

2 + iε]
= pμB1(p

2, m2
1, m

2
2)

16π2μ4−n

∫
dnq

i(2π)n

qμqν

[q2 −m2
1 + iε][(q − p)2 −m2

2 + iε]

= pμpνB21(p
2, m2

1, m
2
2) + gμνB22(p

2, m2
1, m

2
2)
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Poles of Passarino-Veltman Functions (I)

Some of these functions have poles at n = 4, and thus have an
“infinite” piece proportional to

Δ ≡ 1

4− n
− γE + ln 4π

where γE 	 0.5772 is the Euler-Mascheroni constant that always
accompanies the 1/(4−n) pole term just as the ln 4π factor does.

The primitive one-point and two-point functions have analytic so-
lutions

A0(m
2) = m2

(
Δ + 1− ln m2/μ2

)

B0(p
2, m2

1, m
2
2) = Δ−

∫ 1

0

ln
(1− x)m2

1 + xm2
2 − x(1− x)p2 − iε

μ2

= Δ− ln(p2/μ2)− I(x+)− I(x−)

where

x± =
(p2 −m2

2 + m2
1)±

√
(p2 −m2

2 + m2
1)

2 − 4p2(m2
1 − iε)

2p2
, and

I(x) = ln(1− x)− x ln(1− x−1)− 1.
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Poles of Passarino Veltman Functions (II)

Computing the other two-point functions, we can summarize the
results in terms of the of their Δ-dependent “infinite pieces” and
their finite function pieces (written as lower-case):

A0(m
2) = m2Δ+ a0(m

2)

B0(p
2, m2

1, m
2
2) = Δ + b0(p

2, m2
1, m

2
2)

B1(p
2,m2

1,m
2
2) =

1

2
Δ + b1(p

2,m2
1, m

2
2)

B21(p
2,m2

1,m
2
2) =

1

3
Δ + b21(p

2, m2
1, m

2
2)

B22(p
2,m2

1, m
2
2) =

(
m2

1 +m2
2

4
− p2

12

)
Δ+ b22(p

2, m2
1, m

2
2)
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Fermion Loop Computation

Now we come to our example. We compute the general one-loop
contribution using Feynman rule

iAγμ(v − aγ5)
f

f̄
V μ

where A, v and a are parametrizations of the coupling. The
fermion couplings to a V ′ vector boson are A′, v′, and a′. With
these basic rules we are ready to compute the one-loop function
ΠV V ′(p

2):

iΠμν
V V ′ = −

∫
dnq

(2π)n
Tr

[
iAγμ(v − aγ5)i

[(/q − /p) + m2]

(q − p)2 −m2
2

iA′γν(v′ − a′γ5)
i(/q + m1)

q2 −m2
1

]

After some manipulations one finds that

Πμν
V V ′ =

AA′

4π2

{
(vv′ + aa′)

[
2pμpν(B21 −B1) + gμν(−2B22 − p2B21 + p2B1)

]
+ m1m2(vv′ − aa′)gμνB0

}
(p2, m2

1, m
2
2).
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Divergent Parts of Self-Energy Correction (I)

Only the transverse piece of the self-energy proportional to gμν

plays a role here: Πμν(p2) = Π(p2)gμν + · · ·.
If our calculations are correct and the theory makes sense, all
divergences that arise in Π corrections should cancel out in the
observables.

For fermion self-energies, we can check for finiteness of the theory
predictions given the expressions above. The Δ-divergence part of
ΠV V ′ is

ΠΔ
V V ′(p2) =

AA′

4π2

{
(vv′ + aa′)

(
−1

2
(m2

1 + m2
2) +

p2

3

)
+ (vv′ − aa′)m1m2

}
Δ
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Divergent Parts of Self-Energy Correction (II)

For the top-bottom quark doublet, we can compute these Δ-
divergence pieces. The nonzero contributions are

ΠΔ
ZZ(m2

Z) = m2
Z

∑
i=t,b

e2

4s2c2

[
(T 3

i − 2Qis
2)2 + (T 3

i )2
]

Δ

ΠΔ
γγ(m

2
Z) = m2

Z

∑
i=t,b

(eQi)
2 Δ

ΠΔ
γZ(m2

Z) = m2
Z

∑
i=t,b

e2Qi

2sc
(T 3

i − 2Qis
2) Δ

ΠΔ
WW (m2

W ) = m2
W

e2

4s2
Δ

Substituting these expressions into our earlier equations for the
observables, one finds that all Δ-divergent terms cancel identically,
as they should.

You can check this as an exercise.
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Higgs Contributions to Self-Energies

The Higgs boson contributes to the self energies of the vector
bosons.

Two good exercises are to

... compute the Higgs-mediated vector boson self energies

ΠV V (p
2) = − 1

2π2

m4
V

v2

[
B0(p

2, m2
V , m2

H) +
1

m2
V

B22(p
2,m2

V , m2
H)

]

− 1

16π2

m2
V

v2
A0(m

2
H)

where V = W, Z.

... and show that all m2
H-dependent infinities cancel in the observ-

ables.

47



Standard Model Global Fits

We now go beyond our oblique subset and discuss a complete
global fit to the SM observables.

Introduce a χ2 function that is (approximately)

χ2 =
∑ (Oth

i (

P )−Oexpt

i )2

(ΔOexpt
i )2

where the parameters are


P = {mH, mt, αS, α, . . .}
and the observables are

Oexpt
i = {ŝ2

eff, m̂W , Γ̂l, m̂t, α̂S,Δα
(5)
had, . . .}

In the next few slides we review the results of LEP Electroweak
Working Group, LEP Collaborations, hep-ex/0511027. More re-
cent updates are very similar to these results. See LEPEWWG
web page

http://lepewwg.web.cern.ch/LEPEWWG/

Pulli =
Oth

i (

P0)−Oexpt

i

ΔOexpt
i

, where 
P0 = 
P at best fit point.
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Measurement with Systematic Standard Pull

Total Error Error Model fit

Δα
(5)
had(m2

Z) 0.02758 ± 0.00035 0.00034 0.02767 −0.3

a) LEP-I

line-shape and

lepton asymmetries:

mZ [GeV] 91.1875 ± 0.0021 (a)0.0017 91.1874 0.0

ΓZ [GeV] 2.4952 ± 0.0023 (a)0.0012 2.4959 −0.3

σ0
had [nb] 41.540 ± 0.037 (b)0.028 41.478 1.7

R0
� 20.767 ± 0.025 (b)0.007 20.743 1.0

A0, �
FB 0.0171 ± 0.0010 (b)0.0003 0.0164 0.7

+ correlation matrix

τ polarisation:

A� (Pτ ) 0.1465 ± 0.0033 0.0016 0.1480 −0.5

qq charge asymmetry:

sin2 θlept
eff (Qhad

FB ) 0.2324 ± 0.0012 0.0010 0.23140 0.8

b) SLD

A� (SLD) 0.1513 ± 0.0021 0.0010 0.1480 1.6

c) LEP-I/SLD Heavy Flavour

R0
b 0.21629 ± 0.00066 0.00050 0.21579 0.8

R0
c 0.1721 ± 0.0030 0.0019 0.1723 −0.1

A0, b
FB 0.0992 ± 0.0016 0.0007 0.1038 −2.8

A0, c
FB 0.0707 ± 0.0035 0.0017 0.0742 −1.0

Ab 0.923 ± 0.020 0.013 0.935 −0.6

Ac 0.670 ± 0.027 0.015 0.668 0.1

+ correlation matrix

d) LEP-II and Tevatron

mW [GeV] (LEP-II, Tevatron) 80.410 ± 0.032 80.378 1.0

ΓW [GeV] (LEP-II, Tevatron) 2.123 ± 0.067 2.092 0.5

mt [GeV] (Tevatron) 172.7 ± 2.9 2.4 173.3 −0.2

49



- 1 - - 2 - - 3 - - 4 -

all Z-pole all Z-pole data all Z-pole data all Z-pole data
data plus mt plus mW, ΓW plus mt,mW,ΓW

mt [GeV] 173+13
−10 172.7+2.8

−2.8 179+12
−9 173.3+2.7

−2.7

mH [GeV] 111+190
−60 112+62

−41 148+248
−83 91+45

−32

log(mH/GeV) 2.05+0.43
−0.34 2.05+0.19

−0.20 2.17+0.43
−0.36 1.96+0.18

−0.19

αS(m2
Z) 0.1190 ± 0.0027 0.1190 ± 0.0027 0.1190 ± 0.0028 0.1186 ± 0.0027

χ2/d.o.f. (P ) 16.0/10 (9.9%) 16.0/11 (14%) 17.3/12 (14%) 17.8/13 (17%)

sin2 θlept
eff 0.23149 0.23149 0.23143 0.23140

±0.00016 ±0.00016 ±0.00014 ±0.00014

sin2 θW 0.22321 0.22331 0.22285 0.22304

±0.00062 ±0.00041 ±0.00043 ±0.00033

mW [GeV] 80.363 ± 0.032 80.364 ± 0.021 80.387 ± 0.022 80.377 ± 0.017

Table 1: Results of the fits to: (1) all Z-pole data (LEP-I and SLD), (2) all Z-pole data plus direct mt

determination, (3) all Z-pole data plus direct mW and ΓW determinations, (4) all Z-pole data plus direct
mt, mW, ΓW determinations (i.e., all high-Q2 results). As the sensitivity to mH is logarithmic, both mH as
well as log(mH/GeV) are quoted. The bottom part of the table lists derived results for sin2 θlept

eff , sin2 θW

and mW. See text for a discussion of theoretical errors not included in the errors above.
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Figure 1: LEP-I+SLD measurements of sin2 θlept
eff and Γ�� and the SM prediction. The point shows the

predictions if among the electroweak radiative corrections only the photon vacuum polarisation is included.
The corresponding arrow shows variation of this prediction if α(m2

Z) is changed by one standard deviation.
This variation gives an additional uncertainty to the SM prediction shown in the figure.
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αs= 0.118 ± 0.003

mt= 172.7 ± 2.9 GeV

Figure 2: Comparison of LEP-I measurements with the SM prediction as a function of mH. The measure-
ment with its error is shown as the vertical band. The width of the SM band is due to the uncertainties
in Δα

(5)
had(m

2
Z), αS(m

2
Z) and mt. The total width of the band is the linear sum of these effects.
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Figure 3: Comparison of LEP-I measurements with the SM prediction as a function of mH. The measure-
ment with its error is shown as the vertical band. The width of the SM band is due to the uncertainties
in Δα

(5)
had(m

2
Z), αS(m

2
Z) and mt. The total width of the band is the linear sum of these effects. Also shown

is the comparison of the SLD measurement of A�, dominated by A0
LR, with the SM.
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Figure 4: Comparison of LEP-I and SLD heavy-flavour measurements with the SM prediction as a function
of mH. The measurement with its error is shown as the vertical band. The width of the SM band is due
to the uncertainties in Δα

(5)
had(m

2
Z), αS(m

2
Z) and mt. The total width of the band is the linear sum of

these effects. Also shown is the comparison of the LEP-I measurement of the inclusive hadronic charge
asymmetry Qhad

FB with the SM.
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Figure 5: Comparison of mW and ΓW measured at LEP-II and pp colliders, of sin2 θW measured by NuTeV
and of APV in caesium with the SM prediction as a function of mH. The measurement with its error is
shown as the vertical band. The width of the SM band is due to the uncertainties in Δα

(5)
had(m

2
Z), αS(m

2
Z)

and mt. The total width of the band is the linear sum of these effects.
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Figure 6: The comparison of the indirect measurements of mW and mt (LEP-I+ SLD data) (solid contour)
and the direct measurements (pp colliders and LEP-II data) (dashed contour). In both cases the 68% CL
contours are plotted. Also shown is the SM relationship for the masses as a function of the Higgs mass.
The arrow labelled Δα shows the variation of this relation if α(m2

Z) is changed by one standard deviation.
This variation gives an additional uncertainty to the SM band shown in the figure.
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Figure 7: The 68% confidence level contour in mW and mH for the fit to all data except the direct
measurement of mW, indicated by the shaded horizontal band of ±1 sigma width. The vertical band shows
the 95% CL exclusion limit on mH from the direct search.
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Figure 8: The 68% confidence level contour in mt and mH for the fit to all data except the direct mea-
surement of mt, indicated by the shaded horizontal band of ±1 sigma width. The vertical band shows the
95% CL exclusion limit on mH from the direct search.
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Figure 9: Δχ2 = χ2 − χ2
min vs. mH curve. The line is the result of the fit using all data (last column of

Table 1); the band represents an estimate of the theoretical error due to missing higher order corrections.
The vertical band shows the 95% CL exclusion limit on mH from the direct search. The dashed curve is
the result obtained using the evaluation of Δα

(5)
had(m

2
Z) from Troconiz, Yndurain, 2004.
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Figure 10: Constraints on the mass of the Higgs boson from each pseudo-observable. The Higgs-boson
mass and its 68% CL uncertainty is obtained from a five-parameter SM fit to the observable, constraining
Δα

(5)
had(m

2
Z) = 0.02761± 0.00036, αS(m

2
Z) = 0.118± 0.003, mZ = 91.1875± 0.0021 GeV and mt = 172.7±

2.9 GeV. Because of these four common constraints the resulting Higgs-boson mass values are highly
correlated. The shaded band denotes the overall constraint on the mass of the Higgs boson derived from
all pseudo-observables including the above four SM parameters as reported in the last column of Table 1.
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Measurement Fit |Omeas−Ofit|/σmeas

0 1 2 3

0 1 2 3

Δαhad(mZ)Δα(5) 0.02758 ± 0.00035 0.02768
mZ [GeV]mZ [GeV] 91.1875 ± 0.0021 91.1875
ΓZ [GeV]ΓZ [GeV] 2.4952 ± 0.0023 2.4957
σhad [nb]σ0 41.540 ± 0.037 41.477
RlRl 20.767 ± 0.025 20.744
AfbA0,l 0.01714 ± 0.00095 0.01645
Al(Pτ)Al(Pτ) 0.1465 ± 0.0032 0.1481
RbRb 0.21629 ± 0.00066 0.21586
RcRc 0.1721 ± 0.0030 0.1722
AfbA0,b 0.0992 ± 0.0016 0.1038
AfbA0,c 0.0707 ± 0.0035 0.0742
AbAb 0.923 ± 0.020 0.935
AcAc 0.670 ± 0.027 0.668
Al(SLD)Al(SLD) 0.1513 ± 0.0021 0.1481
sin2θeffsin2θlept(Qfb) 0.2324 ± 0.0012 0.2314
mW [GeV]mW [GeV] 80.398 ± 0.025 80.374
ΓW [GeV]ΓW [GeV] 2.140 ± 0.060 2.091
mt [GeV]mt [GeV] 170.9 ± 1.8 171.3

Figure 11: [LATEST FROM WINTER 2007] Constraints on the mass of the Higgs boson from each
pseudo-observable. The Higgs-boson mass and its 68% CL uncertainty is obtained from a five-parameter
SM fit to the observable, constraining Δα

(5)
had(m

2
Z) = 0.02761 ± 0.00036, αS(m

2
Z) = 0.118 ± 0.003, mZ =

91.1875± 0.0021 GeV and mt = 172.7± 2.9 GeV. Because of these four common constraints the resulting
Higgs-boson mass values are highly correlated. The shaded band denotes the overall constraint on the
mass of the Higgs boson derived from all pseudo-observables including the above four SM parameters as
reported in the last column of Table 1.
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Figure 12: [LATEST FROM WINTER 2007] Δχ2 = χ2 − χ2
min vs. mH curve. The line is the result of

the fit using all data (last column of Table 1); the band represents an estimate of the theoretical error due
to missing higher order corrections. The vertical band shows the 95% CL exclusion limit on mH from the
direct search. The dashed curve is the result obtained using the evaluation of Δα

(5)
had(m

2
Z) from Troconiz,

Yndurain, 2004.
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Figure 13: [LATEST FROM WINTER 2007] Constraints on the mass of the Higgs boson from each
pseudo-observable. The Higgs-boson mass and its 68% CL uncertainty is obtained from a five-parameter
SM fit to the observable, constraining Δα

(5)
had(m

2
Z) = 0.02761 ± 0.00036, αS(m

2
Z) = 0.118 ± 0.003, mZ =

91.1875± 0.0021 GeV and mt = 172.7± 2.9 GeV. Because of these four common constraints the resulting
Higgs-boson mass values are highly correlated. The shaded band denotes the overall constraint on the
mass of the Higgs boson derived from all pseudo-observables including the above four SM parameters as
reported in the last column of Table 1. 63
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Figure 14: SM Higgs decay branching ratios as a function of MH . (Djouadi et al., 2005)
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Figure 15: SM Higgs boson decay branching ratios in the low and intermediate Higgs boson mass range.
(Djouadi et al., 2005)
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Figure 16: SM Higgs total decay width as a function of MH . Note how narrow it is for MH < mW /2.
(Djouadi et al., 2005).
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Figure 17: Higgs boson production channels at LEP2.

g

g

t , X
H

q

q

W,Z

W,Z

q′,q

q’,q

H

q

q

Z,W

Z,W

H

Figure 18: Leading Higgs production processes at hadron colliders: gg → H , qq → qqH , and qq̄ →
WH, ZH .
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Figure 19: Higgs production with heavy quarks: sample of Feynman diagrams illustrating the two corre-
sponding parton level processes qq̄, gg → tt̄H, bb̄H . Analogous diagrams with the Higgs boson leg attached
to the remaining top(bottom)-quark legs are understood. (Figs from L. Reina, 2004)
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LEP II Searches for the Higgs Boson
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Figure 20: Higgs boson production channels at LEP2. (fig. from L. Reina, 2004)

The LEP searches for the Higgs boson concluded with runs at
about

√
s ≤ 209GeV, and ultimately reached the limit of

MH ≥ 114.4GeV
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Figure 21: Tevatron cross section,
√

s = 1.96 TeV. (Tev 4 LHC Workshop)
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Figure 22: Integrated luminosity required for each experiment at the Tevatron, Run II, to exclude a SM
Higgs boson at 95% CL or to observe it at the 3σ or 5σ level. (Tevatron Run 2 Workshop)
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Figure 23: Cross sections for SM Higgs boson production processes at the LHC at
√

s = 14 TeV. (TeV 4
LHC Workshop)
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Figure 24: Significance plots for the SM Higgs boson discovery at 30 fb−1 integrated luminosity. (ATLAS)
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Figure 25: Significance plots for the SM Higgs boson discovery at 100 fb−1 integrated luminosity. (ATLAS)
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Figure 26: Luminosity required to reach a 5σ discovery signal in various channels at CMS (CMS).
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“Theory Constraints” on the Higgs Boson Mass

The Higgs boson mass in the SM is a free parameter determined
by

m2
h = 2λv2

where λ is the free (dimensionless) parameter.

From data we have determined that

114 ≤ mH
<∼ 200GeV

where the lower bound comes from direct searches and the upper
bound from precision EW studies.

There are three main “theory constraints” of the SM Higgs boson:
1. Perturbative Unitarity
2. Triviality/Perturbative scaling
3. Vacuum Stability
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Perturbative Unitarity

The Goldstone equivalence theorem (see, e.g., Peskin-Schroeder):

A(V 1
L · · ·V n

L → V 1
L · · · V m

L ) = (i)n(−i)mA(ω1 · · ·ωn → ω1 · · ·ωm) +O
(

m2
V

s

)

Let look at W+
L W−

L → W+
L W−

L :

A(ω+ω− → ω+ω−) = −m2
H

v2

(
s

s−m2
H

+
t

t−m2
H

)

Partial wave amplitude decomposition of the amplitude is

A = 16π
∞∑
l=0

(2l + 1)Pl(cos θ)al

Using orthogonality of the Legendre polynomials, cross-section is

σ =
16π

s

∞∑
l=0

(2l + 1)|al|2

From the optical theorem

σ =
16π

s

∞∑
l=0

(2l + 1)|al|2 = 1

s
Im |A(θ = 0)|

=
16

π

∞∑
l=0

(2l + 1) Im al

Thus

|al|2 = Re(al)
2 + Im(al)

2 = Im(al)
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which implies that

|Re(al)| ≤ 1

2

since

x2 + y2 = y =⇒ x2 +

(
y − 1

2

)2

=
1

4
.

The J = 0 partial wave a0 is

a0 =
1

16πs

∫ 0

−s

Adt = − m2
H

16πv2

[
2 +

m2
H

s−m2
H

− m2
H

s
log

(
1 +

s

m2
H

)]

For s� m2
H , we have

a0 → − m2
H

8πv2

This needs to be less than 1/2:∣∣∣∣− m2
H

8πv2

∣∣∣∣ ≤ 1

2
=⇒ mH < 2v

√
π = 870GeV

Considering other channels in addition one finds

mH < 710GeV

What does this number mean? If mH
>∼ 710GeV a tree-level cal-

culation is not sufficient.
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Triviality Bound

The Higgs self-coupling is subject to quantum corrections. The
RGE is

32π2 dλ

d logQ
= 24λ2 − (3g′2 + 9g2 − 24y4

t )λ

+
3

8
g′4 +

3

4
g′2g2 +

9

8
g4 − 24y4

t + · · ·

If λ is large (i.e., large mH = 2λv2) the first term dominates

dλ

d logQ
=

3

4π2
λ2

Easy to solve this

λ(Q) =
λ(Q0)

1− 3
4π2λ(Q0) ln

Q2

Q2
0

This is a rapidly diverging function ofQ. λ diverges at the Landau
Pole scale, QLP .:

1− 3

4π2
λ0 ln

Q2
LP

Q2
0

=⇒ QLP = Q0 exp

[
2π2

3λ0

]
= mH exp

[
4v2π2

3m2
H

]

Why is this important?
1. Given a Higgs mass we can say at what scale QLP the theory
breaks down.
2. Given an interesting scale (MGUT , Mneutrino, etc.) you can de-
termine what low-energy Higgs mass keeps the theory perturbative
up to that scale.
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Vacuum stability

If λ is very small, then the term that dominates is y4
t term:

dλ

d logQ
= −3y

4
t

4π2

which drives λ smaller and smaller as we run up to the UV .

If λ(Q) < 0 at some scale, there is worry that the vacuum is not
stable.

One can approximately say that at the lowest scale QV such that

λ(QV ) < 0

one expects new physics to lift the vacuum. Thus, the SM “breaks
down” for Q > QV .

Vacuum stability puts a lower bound on mH for any given scale
QV up to which we require λ(Q < QP ) > 0.
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Figure 27: Hambye, Riesselmann, ’97
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