Global Aerosol Microphysics Models: Tools for Assessing Uncertainties in the Indirect Effect

Peter Adams

Department of Civil and Environmental Engineering Department of Engineering and Public Policy Center for Atmospheric Particle Studies Carnegie Mellon University, Pittsburgh, USA

Funding: NSF / NASA

Themes and Overview

- Goal: Global CCN prediction
- Methodological
 - Mechanistic models
 - Quantify importance of processes
- Sea-salt and mineral dust
- Carbonaceous
 - Size/number vs chemical solubility
 - POA vs SOA

Indirect Effect on Climate

More Surface Area = More Scattering

Photos by Amy Sage at CMU

Cloud Condensation Nuclei (CCN)

 "Activation" = formation of cloud droplet from aerosol particle
 involves a competition between solute and surface tension effects (Kohler)

Cloud Condensation Nuclei (CCN)

Critical diameter depends on:

- Composition
- Mixing state
- Ambient supersaturation (S = 0.2% as a metric)

Forcings Comparison

Intergovernmental Panel on Climate Change (IPCC): 4th assessment report Carnegie Mellon

Two Model Types

Limitations of Empirical Approach

- I: *Martin et al*. [1994]: -0.68 W/m²
- II: *Martin et al.* with background CCN: -0.40 W/m²
- III: Jones et al. [1994]:
 - -0.80 W/m²
- IV: *Boucher and Lohmann* [1995]:
 - -1.78 W/m²

"It is argued that a less empirical and more physically based approach is required..."

Microphysical Models

Offer <u>potential</u> to narrow uncertainty in indirect forcing...

Size-Resolved Models

- Offer <u>potential</u> to narrow uncertainty in indirect forcing...
- Subject to important model inputs:
 - nucleation mechanism / parameterization
 - carbonaceous aerosol solubility
 - mixing state
 - emissions
 - \cdot mass: sea-salt, mineral dust etc.
 - <u>number</u> of primary emissions
 - scavenging lifetime
 - pre-industrial aerosols

Size-Resolved Models

Offer <u>potential</u> to narrow uncertainty in indirect forcing...

It will be some time before microphysics models can predict

CCN activity

indirect radiative forcing

with a tolerable degree of uncertainty

• pre-industrial aerosols

What the world does <u>not</u> need:

♣What the world <u>does</u> need:

What the world does <u>not</u> need:

- Another radiative forcing estimate
- (unless it's outside the IPCC range)

What the world <u>does</u> need:

What the world does <u>not</u> need:

- Another radiative forcing estimate
- (unless it's outside the IPCC range)
- What the world <u>does</u> need:
 - To know what physical processes and model inputs account for uncertainty range
 - Test significance of new processes

What the world does <u>not</u> need:

- Another radiative forcing estimate
- (unless it's outside the IPCC range)
- What the world <u>does</u> need:
 - To know what physical processes and model inputs account for uncertainty range
 - Test significance of new processes
- Models can do these things

 \Rightarrow tool for defining research priorities

TOMAS Model

Meteorology (host model):

- GISS GCM II-prime (predicted meteorology)
- GEOS-CHEM (assimilated meteorology)
- Microphysics: TwO-Moment Aerosol Sectional (TOMAS)
- ♣ <u>Species</u>: Sulfate, sea-salt, EC, OC, dust
- Processes
 - Emissions (size-resolved)
 - Chemistry: sulfur chemistry and SOA formation
 - Microphysics: condensation, coagulation, nucleation
 - Cloud processing: oxidation of SO₂
 - Size-resolved dry / wet deposition

TOMAS

TwO-Moment Aerosol Sectional algorithm

- Moments = aerosol <u>number</u> and <u>mass</u>
- 30 sections from $D_p \sim 10$ nm to $\sim 10 \ \mu m$
- conserves mass (during coagulation) and number (during condensation)
- Single-moment sectional: generally do not conserve number during condensation

[Adams and Seinfeld, 2002]

Aerosol Microphysics

TOMAS Sample Predictions

Sea-salt and CCN

Sea-salt Emissions Parameterizations

on

- How much does sea-salt contribute to the natural background CCN concentrations?
- Do ultrafine sea-salt emissions enhance CCN concetrations?

CCN(0.2%) concentrations (cm⁻³)

Pierce, J. R. and Adams, P. J.: Global evaluation of CCN formation by direct emission of sea salt and growth of ultrafine sea salt, *Journal of Geophysical Res*earch, 111, 2006.

CCN from Ultrafine Sea-salt

Observed Number Distributions

Observations from *Heintzenberg et al.* [2000]

Mineral Dust and CCN

Dust Model Description

Dust Mass Concentrations

Carbonaceous Aerosol and CCN

Carbonaceous Simulation

♣ <u>Species</u>: Sulfate, sea-salt, EC, OM

- EC and OM are both divided into hydrophilic/hydrophobic fractions
- Emissions: Bond et al., 2004
 - EC: 8 Tg yr⁻¹ (80% hydrophobic initially)
 - OC: 33.9 Tg yr⁻¹ (50% hydrophobic initially)
- Aging of hydrophobic to hydrophilic with
 - $\tau = 1.5 \text{ days}$
- Primary emissions: assumed lognormal
 - D_{pg} (mass) = 100 nm and σ = 2
 - D_{pq} (number) = 30 nm

♣ <u>SOA</u>: later in this talk

CCN Activity of EC/OC

Modified Köhler theory

- Slightly soluble species
- Insoluble species
- Surfactant effects <u>not</u> included

Base case: assume two aerosol populations

- Population 1: hydrophobic EC
- Population 2: internal mixture of other species
 - · Sulfate and sea-salt
 - Hydrophilic EC (insoluble core)
 - Hydrophobic OC (slightly soluble, 0.009 g /100 cm³ H_2O)
 - · Hydrophilic OC (D_{crit} = 45 nm and 140 nm at S = 1% and 0.2%)

CCN(0.2%) Impacts

Conceptual Models

Sensitivity to Mixing / Solubility

Repeat simulations of CCN(0.2%) for alternative activation scenarios:

1) Insoluble ("<u>Carbonaceous seeding</u>"):

- EC/OC are insoluble cores
- Internally mixed with sulfate/sea-salt
- 2) Externally-mixed* ("<u>OC solute by itself</u>"):
 - External mixtures: sulfate, sea-salt, EC/OC
 - Solubility/activation same as base case
 - *CCN activation/wet deposition calculated with external mixing but microphysics still internal mixing

CCN(0.2%) Impacts

What About SOA?

- SOA = secondary organic aerosol (chemically produced from gaseous VOCs)
- Sources and chemistry of SOA highly uncertain
- Most global/regional models suggest that SOA is <30% of total OA</p>
- Recent work suggests much POA evaporates in atmosphere
- AMS measurements suggest that SOA may be ~90% of total OA

POA vs. SOA

POA and SOA have different effects on aerosol size distribution

⇒We expect different effects on CCN concentration

SOA	POA
 Adds only mass No new particles Mass condensing onto existing particles ◊ growth Impact on CCN depends on what size SOA condenses 	 Adds mass and number (both UF and CCN) UF provide condensational sink ◊ growth to CCN Adding number leads to coagulation ◊ reduces number ◊ also growing mass to larger sizes

Simulations

GEOS-CHEM global model

- SOA condenses according to absorptive partitioning theory
- Two months "spin up" (Nov and Dec)
- All results are Jan average
- POA Case: POA only; no SOA
 - POC = 26 Tg/yr
 - Emissions from Bond [2004], Cooke [1999], Park [1998] and GFED2

Base Case

- POA plus 8.6 Tg/yr of SOA (10% of monoterpene emissions)
- Sensitivity Cases
 - Total OC = 26 Tg/yr
 - Vary %SOA: 0%, 10%, 50%, 90%, 100%

Effect of Biogenic SOA

- Surface CCN(0.2%) without SOA
- CCN(0.2%) ratios
 - = <u>CCN w/ biogenic SOA</u> CCN w/o SOA

cm⁻³

POA vs. SOA effect on CCN

- Surface CCN(0.2%) 100%POA case
 - CCN(0.2%) ratios
 - = <u>CCN 100%SOA</u> CCN 100%POA

cm⁻³

POA vs. SOA effect on CCN

POA vs. SOA effect on CCN

Absorptive Partitioning: Organic vs. Aqueous

Surface CCN(0.2%) for 50%SOA case

♣ CCN(0.2%) ratios

= <u>cond to aqueous</u> cond to organic

Conclusions

Microphysical models

- offer *potential* to reduce uncertainty in the future
- provide insight into physical processes controlling uncertainties now
- Ultrafine sea-salt important for natural CCN in S. Ocean
- Dust reduces CCN(0.2%) via coagulational scavenging
- Microphysics (size, number) of carbonaceous as important as chemistry
- Primary emissions generally create more CCN than secondary