Novel Technologies

M. Saiful Huq, Ph.D., FAAPM, FInstP

Professor and Director, Division of Medical Physics Department of Radiation Oncology UPMC Cancer Centers, Pittsburgh, Pennsylvania, USA

Goals of Radiation Therapy

Primary goal of RT is to achieve local (or regional) control with limited risk of normal tissue complications

Steps Needed to Accomplish The Goal of Radiotherapy

- Find the tumor
- Delineate the target and OAR volumes as accurately as possible
- Dose paint or dose sculpt and escalate the dose to the target and spare the OAR
- Hit the target repeatedly with high energy photons or electrons while sparing the surrounding normal tissues

But: the patient is alive!

Uncertainties in RT

patient positioning and target delineation

- setup and reproducibility errors
- organ motion errors
 - Intra-fraction motion errors
 - Inter-fraction motion errors
- Physiological changes and deformation

2D and 3D in the Seventies, Eighties and Early Nineties

Conventional 3D Treatment

IMRT and IG(A)RT

Computer-controlled shaping of the radiation field during treatment.

Image before treatment

IMRT Treatment

3D versus IMRT

3D Conformal

Intensity Modulation

We Have Made Great Progress in Optimizing Dose Delivery to Static Objects

Evolution of Technology

CT Sim
Convolution
IMRT Optimization
Monte Carlo
IMPT
etc.

We have perfected the optimization of dose to static objects

However...

Courtesy: Jim Dempsey

The Clinical Challenge

- Accurately deliver ionizing radiation to the real dynamic patient

4D CT Data from Low et al. Med. Phys. 30(6) (2003) 1254-1263

4-Dimensional Radiation Therapy

Treatment for the New Millennium—the addition of the TIME dimension

The 3D images
in
4th Dimension
of Time

Esophagus in 4D

Intra-fraction Motion is Observed During Cone-Beam CT Acquisition

Rectal gas artifacts seen in prostate for every 1 of 6 cases

Looking down the CBCT

Smitsmans et al. Int J Rad Oncol Biol Phys 63(4):975-984

Intra-Fraction Patient Motion

"Can only be minimized in IMRT but not eliminated"

"Patient motion increases as treatment time gets longer" S. Kim et. al., IJROBP, 2003

Setup Uncertainties In Head & Neck Treatment

Elapsed Treatment Days

19 Treatment CT scans acquired during the course of head & neck radiotherapy

Courtesy: Dong MDAH

Challenges

- How do we account for these intra- and interfraction motion?
- How do we draw target volumes taking motion into account?
- How do we deliver radiation treatment so that the beam is on only for times when the target is enclosed by the beam?
- Novel technologies have been developed to address these challenges

GE Multi-slice CT Scanners with RPM Respiratory Gating

Advantage Windows Console

PET-CT Simulation in Radiation Oncology

UPMC PET/CT Scan Protocol CT Survey Spiral CT FUSION scatter correction PET attenuation correction 4-6 Bed positions 15 mCi; ~60 min uptake Fused PET/CT PET

PET for IMRT Planning

Hybrid PET-CT

Heron et al NMA 2003

Hybrid PET-CT

Heron et al NMA 2003

CT only

4D CT only

PET-CT only

4D PET-CT only

Assessment of Response with 4D PET-CT

4D-PET/CT pre-treatment 4D-PET/CT post-treatment

Courtesy

University of Pittsburgh Cancer Institute,

Department of Radiation Oncology

Trilogy and or Clinac IX Technology Image-guided Radiotherapy

Intervention strategies for intra- and interfraction motion

TRILOGY

Image Guidance Capabilities

- For image guided radiotherapy, Trilogy includes the On-Board Imager (OBI)
 - Two robotic arms
 - kV X ray source
 - Amorphous silicon imaging panel
 - OBI workstation
- Three modes of operation
 - Radiographic
 - Online setup correction
 - Bony anatomy or markers
 - CBCT
 - Online setup correction
 - Bony or soft tissue anatomy
 - Verification of delivered dose
 - Adaptive radiation therapy
 - Fluoroscopic
 - Verification of gated radiotherapy
 - Fluoro-based gating (*Future option)

Trilogy and the On-Board Imager

Intervention Strategy for Interfraction Variation (kV CT)

- two types of strategies
 - > KV CT: Varian, Elekta
 - MV CT: Tomotherapy
- Radiographic mode
 - Anatomy or marker matching between two kV or MV images
- CBCT
 - Anatomy matching

On-Board Imager

VARÍAN

Trilogy and or Clinac IX Technology Orthogonal Radiographs for Online Patient Setup Correction

TRILOGY

Radiographic Mode Acquisition of a Lateral Radiograph

Radiographic Mode Acquisition of an AP Radiograph

Match Analysis - Split Screen

- Compare to reference image
 - **★**Grey-scale display

VARIAN

Trilogy and or Clinac IX Technology Cone beam CT for online patient setup correction

TRILOGY

Conebeam CT

Volumetric CT dataset generated from a single revolution

Cone Beam CT for Online Setup Correction

- (a) Only using optical positioning system(b) After CBCT-based 3D/3D match

First SBRT (Spine) Patient (CBCT Based 3D/3D Match Before Treatment)

First SBRT (Spine) Patient (CBCT Based 3D/3D Match After Treatment)

Pretreatment Fluoroscopic Verification of Gating

- Setup patient
- Extend arms
- Rotate gantry to first field
- Exit treatment room
- Remotely acquire fluoro
- MLC aperture turns green/red, indicating when the gate is open/closed
- Verify target remains within aperture
- Repeat for other fields
- Retract arms remotely
- Treat

Intervention Strategy for Interfraction Variation (MV CT)

"Helical Tomotherapy and Megavoltage CT Imaging is free from high Z artifacts"

Courtesy: Rock Mackie

MVCT Image Quality

Hi-ART^S MVCT

Planning CT (KVCT)

Courtesy: Rock Mackie

Reduced Artifacts on MVCT KV KV MV MV

Courtesy: Rock Mackie

Intervention Strategy for Inter/Intra-fraction Variation (Calypso)

Non-ionizing approach for accurate and continuous target localization for treatment setup and monitoring during radiation therapy delivery

Transverse prostate with Beacon® transponders (AC electromagnetic markers)

The Calypso® 4D Localization
System Console

Three beacon transponders implanted in the prostate

Array over the patient

VARÍAN

Trilogy Technology Controlling for respiratory motion

TRILOGY

Respiratory Gating

Trilogy includes the RPM Gating System

- Infrared camera
- External marker block
- Gating workstation

Process

- Place block on patient's abdomen
- Camera monitors block motion
- Respiratory waveform shows how the block moves up and down in time
- User sets upper and lower thresholds on block motion
- Whenever the block comes between the thresholds, the beam is on
- Whenever the block moves outside the thresholds, the beam is off
- Free-breathing and breath hold protocols are supported, as are gating at inhalation or exhalation or at any other point in the respiratory cycle

VARÍAN

Trilogy Technology Optically-guided patient positioning

TRILOGY

Optically-guided Stereotactic Localization

- Trilogy includes an Optical Guidance System
 - 3D infrared camera
 - Tracking accuracy o.3mm
 - Optically-guided head ring
 - Optically-guided bite tray
 - Optical guidance workstation
- Two modes of operation
 - Frame-based SRS and IMRS
 - Optically-guided head ring
 - Frameless SRS, SRT, IMRS and IMRT
 - Optically-guided bite tray

Frame-based Intracranial Positioning

- Applications: Both cone-based and MLC-based SRS
- Clinical Uses: Functional, Benign and Malignant targets

Frameless Intracranial Positioning

- Applications: SRS, IMRS, SRT, IMRT, 3DCRT
- Clinical Uses: Metastatic tumors, Intracranial SRS/SRT, H&N

-2.0 absolute
6.8
4.1
8.2
-2.6
1.1
-4. 3

Intracranial SRS Using Millennium 120MLC

Extra-cranial Radiosurgery

Rapid Arc

Elekta Synergy S

Robot

- New robot integrated
- 6 Degrees of Freedom
- 210 kg pay load
- o.2 mm repeatability
- 3 m reach
- Integrated cable management system

CyberKnife robot has six degrees of freedom

Robot (contd)

- Robot calibration
- 0.12 mm mechanical accuracy
- Arbitrary beams
- Around 100 nodes
- Around 1200 beams

Linear Accelerator

- 330 lbs.
- X-band
- 6 MV
- 8oo MU/min*
- 5 60 mm circular collimators (5, 7.5, 10, 12.5, 15, 20, 25, 30, 35, 40, 50, 60 mm)
- Maximum tumor size of about 250 cc

Beam Orientations for a 110 Beams Synchrony Plan

Respiratory Compensation on the CyberKnife

Synchrony® Respiratory Tracking System

- Tightly contoured beams following tumor motion in real-time
- Delivers radiation throughout the respiratory cycle without gating or breath-holding
- Continually adapts to variations in breathing patterns
- Maximizes healthy tissue sparing relative to IMRT / IGRT

Leksell Gamma Knife® 4B, 4C & Perfexion™

Leksell Gamma Knife® 4B

Leksell Gamma Knife 4C

Leksell Gamma Knife® PerfexionTM

Leksell Gamma Knife PERFEXION

Thanks for Your Attention

"Frankly sir, we're tired of being on the cutting edge of technology."