

2017-8

Preparatory School to the Winter College on Optics in Environmental Science

26 - 30 January 2009

Multi-spectral Imaging Basics Part I: The use of multispectral imaging

> Brydegaard M. Lund Institute of Technology Sweden

Multi-spectral Imaging Basics Part I: The use of multispectral imaging

Abdus Salam International Center for Theoretical Physics, 2009

Mikkel Brydegaard Division of Atomic Physics Lund University, Sweden

Today: Three steps to Multispectral Imaging:

Part I: The use of multispectral imaging

Part II: Spectroscopy, Physics and Acquisition

Part III: Color spaces, Data handling and Contrast functions

Lund University

- Lund University founded 1666
- Applied physics since 1962
- Largest university in Scandinavia

- 40.000 under graduates
- 3.000 PhD students
- 40 researchers at . Atomic Physics Division
- 3 PhD students at **Applied Molecular** Spectroscopy and **Remote Sensing**

Applied Molecular Spectroscopy & Remote Sensing Atomic Physics http://www-atom.fysik.lth.se/AMSRS/

Somesfalean

Thomas Svensson

Patrik Lundhin

Spectroscopy for quality control

Which banana is the most tasty?

Spectroscopy for object identification

Lime, Orange and Lemon. Which is which?

Spatial signatures and spectral signatures

What to do with spectroscopy?

M. Brydegaard, AJP, 2009

Light environment and evolution of senses

- Black body radiation
- Planck's law of radiation

$$I(\nu) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kT}} - 1}$$

- Differentiation leads to Wien's displacement law $\lambda_{\rm matrix} = \frac{\hbar}{T}$
- The sun and black body radiation
- The solar radiation peaks around 550nm

http://www.csr.utexas.edu/projects/rs/hrs/pics/irradiance.gif

Light environment and evolution of senses

- Evolution of the human eye
- Other species
- Co evolution
- Contribution I_w to a color channel w given the emission spectra E(λ) and the sensibility spectra for the colour channel S_w(λ)

$$I_{w} = \int_{0}^{\infty} S_{w}(\lambda) * E(\lambda) d\lambda$$

Spectral world perception

Spectral bands:

Human looking at cow

Cow looking at cow

BW observation of cow

Bird looking at cow

source: Ohristopherson (2000) Geosystems

Comparison of spectral bands of various imaging systems

- Spectral content is discretized by a number spectral bands.
- Bands can vary in center position, shape and width
- Paradigm can be applied to all spectroscopic methods, including laser spectroscopy
- Contribution to a band is the integral of the product of sensitivity, reflectance and illumination spectrum.

$$U_{channel(k)} = \int_{0}^{\infty} E_{(\lambda)} R_{(\lambda)} S_{k(\lambda)} d\lambda$$

Examples of what the human eye cannot see, IR

J. Sandsten, Opt. Expr. 2004

NASA

Examples of what the human eye cannot see, IR

AIRS July 2008 CO, (ppmv) Global concentration of CO₂ measured in the IR!

Mineral mapping from satellite covering 430nm-3µm wavelength

http://airs.jpl.nasa.gov/ http://m3.jpl.nasa.gov/

N

Examples of what the human eye cannot see, micro waves

Gabon at visible wavelength

L, C & X band SIR/SAR radar images of Wade Sea. M. Gade et Al.

Gabon at radar wavelength

Fig. 10. Sediment classification provided by the Schleswig Holstein Wadden Sea National Park Office. The color coding denotes the percentage of micro particles (i.e., particles with diameters less than 63 μm).

Examples of what the human eye cannot see, UV

Visible Appearance

Spurious/false color

Recorded by digital camera through 18A UV filter

UV, Changing appearance in the visible

Invisible UV markings on Tenerife lizards

waves

Examples of what the human eye can not see, gamma ray

Positron Emission Tomography (PET) for drug tracing

Backscatter X-ray in use in Amsterdam airport

http://en.wikipedia.org/wiki/Backscatter_X-ray http://en.wikipedia.org/wiki/Positron_emission_tomography

Examples of what the human eye cannot see in medicine

MRI

Thermography

Photosensitizers Multi-spectral X-ray

RGB Pill cameras

Examples of spatial scales

Nerve pulses observed with Ca++ fluorescence imaging

Environmental monitoring of the Mediterranean sea

Fluorescent mouse organs, Hillman Et al. 2008

NIR image of Messier 101 spiral galaxy

Trieste

Examples of temporal scales

Fluorescent mouse organs, Hillman Et. al.

http://en.wikipedia.org/wiki/Interferometric synthetic aperture radar

Indirect photosensitizers and bio-markers

Fluorescence spectra depending on the pH

Trained honey bee

J. Shaw, Opt. Expr. 2005

pH distribution in cells

Bee concentration and landmine distribution

Multi spectral imaging in Lund

- From Astronomy to Microscopy
- From Radiowaves to Gamma rays
- Gas correlation
- Absorption
- Multiple narrow
 spectral lines
- Perfect filter fitting

GasOptics Sweden AB

Multi spectral imaging in Lund

- From Astronomy to Microscopy
- From Radiowaves to Gamma rays
- Lidar
- DIAL, differential absorption lidar, narrow lines
- LIF, Laser Induces Fluorescence, broad band
- LIBS, Laser Induced 1.7E-1breakdown Spectroscopyg=+0elemental lines Integrate Concig/r

http://www-atom.fysik.lth.se/AMSRS/

Multi spectral imaging in Lund

- From Astronomy to Microscopy
- From Radiowaves to Gamma rays
- Tissue optics, Fluorescence imaging, DOT...
- Diagnostics and threatment

Internal and external

http://www.atomic.physics.lu.se/biophotonics/

The ultimate multi spectral imaging conditions

- All super heroes uses
 multispectral imaging
- Infinitive spatial resolution
- Complete spatial dimension coverage, 3D
- Infinitive spectral resolution
- Infinitive temporal resolution
- Complete spectral region coverage

Multi-spectral Imaging Basics Part II: Spectroscopy, Physics and Acquisition

Abdus Salam International Center for Theoretical Physics, 2009

Mikkel Brydegaard Division of Atomic Physics Lund University, Sweden

Measuring with light

The Light Emitting Diode

Detectors and dynamic range

- Light intensity
 measurements
- Light descretized by photons and bits
- Upper and lower limits
- Noise and uncertainty

Intensity histograms, spanning the dynamics.

Figure 20 (a) Original image of Saharan city from an airplane (b) its histogram

Figure 21 (a) Image subjected to histogram equalisation and (b) its histogram.

Absorbing volume

Fluorescence

Fluorescence spectra

 $I = F(\lambda_{ex'}, \lambda_{ex})$

Reflecting surface

Tomato color?

Snell's law: $\theta_1 = \theta_2$

 $n_1 \sin \theta_1 = n_2 \sin \theta_3$

Fresnel equations: $R_{II} = \frac{\mathrm{tg}^2(\theta_1 - \theta_3)}{\mathrm{tg}^2(\theta_1 + \theta_3)};$ $T_{II} = \frac{\mathrm{sin}2\theta_1 \mathrm{sin}2\theta_3}{\mathrm{sin}^2(\theta_1 + \theta_3) \mathrm{cos}^2(\theta_1 - \theta_3)}$ $R_{\perp} = \frac{\mathrm{sin}^2(\theta_1 - \theta_3)}{\mathrm{sin}^2(\theta_1 + \theta_3)};$ $T_{\perp} = \frac{\mathrm{sin}2\theta_1 \mathrm{sin}2\theta_3}{\mathrm{sin}^2(\theta_1 + \theta_2)}$ $R_{II,\perp} = \left(\frac{n_2 - n_1}{n_2 + n_1}\right)^2;$ $T_{II,\perp} = \frac{4n_2n_1}{(n_2 + n_1)^2}$
Specular

Scattering volume

Probability of scattering:

Back-scattered light

Green's functions: G($\mu_{abs(\lambda)}, \mu_{sca(\lambda)}, g$)

Simplified spectroscopy

Reflection spectrum

Assessment of spectral properties R

Example: Multispectral CT

Different organs are distinguished by spectral properties accessed by changing X-ray tube voltage to produce different **E**. We obtain a **1 times 3** vector containing a spectrum from each measurement

Example: Fluorescence

The 2D EEM spectral properties **F** can be assessed with various **E** and various **S**. We obtain a **K times J** matrix containing a excitation emission surface from each measurement. Data are **rearranged** into a **1 times KJ** vector and one dimension is discarded.

Example: Fluorescence

Fluorescence properties **F** can be assessed at various bleaching times **t**, or at different sample temperature**T** to study photokinetics. Resulting light is studied at various **S**. We obtain a **K times J** matrix containing a excitation emission surface from each measurement. Data are **rearranged** into a **1 times KJ** vector and one dimension is discarded.

Example: Scattering properties

Scattering properties can be accessed by tranmission spectras **T** from several path lengths **d**. A **K times 2** matrix

data Sources of spectral

is obtained and rearranged into a **1x2K** vector from each $U_{channel(k,d)} = \int_{0}^{\infty} E_{(\lambda)} T_{(d,\lambda)} S_{k(\lambda)} d\lambda$ measurements. 1...K **S**_{1...К} E λ λ λ d=2

Example: Time resolution

Scattering properties can be accessed by tranmission spectras T from several travel times t. A K times T matrix is obtained and rearranged into a 1xTK vector from each measurement. T

data Sources of spectral

Example: Time resolution

Scattering and fluorescence properties causing delays can be studied equally in time or frequency domain. Spectras T from several modulation frequencies **f are obtained**. A **K times F** matrix is obtained and rearranged into a **1xFK** vector from each measurement.

data Sources of spectral

Imaging and spectroscopy

- Imaging. Obtaining a BW picture, a 2D matrix with spatial information of the sum of all wavelength
- Spectroscopy. Obtaining a 1D vector with all wavelengths in one point.
- Multi spectral imaging.
 Obtaining a 3D matrix with spectral information in each spatial point.

Example 1: A multi spectral CT scan would have three spatial dimensions and on spectral, equals 4D

Example 2: A real-time CT scan, will have above four dimension plus a temporal, equals 5D

Trade off's

- In all following acquisition methods we will see a trade off between spatial, spectral and temporal resolution. We can not have it all with the same technique.
- During the lecture try to keep track on the dimensions and the quantization

Color filters

- Digital color cameras
- Loss of spatial resolution
- Loss of light during absorption^c
- Loss of temporal resolution due to sensitivity
- Only few color channels

Scanning dot method

- Spectroscopy in one point at a time
- LIDAR
- Time axis and the travel of light
- Laser Induced Plasma Spectroscopy

Push broom method

CCD recieves one spatial dimension and one spectral
Temporal dimension is used to reconstruct a 2D image

-Temporal resolution is poor

-Monochromatic

light

stabilization

Push broom

This Imaging Spectrometer/Camera uses a convex grating in a lateral Offner configuration to reduce distortion to less than 1 percent across a 12-mm spectrum with a 16-mm image.

http://m3.jpl.nasa.gov/

Polarized light

- The spatial orientation of the E-vector in respect to the propagation vector
- Polarized sources
- Mixed polarizations
- Reflections and polarization
- Polarizing filters

Tunable wavelength filters

- Light is lost in the filters twice
- Narrow filters provide good spectral resolution, but poor light conditions and long exposure time
- Optimization for relevant acquisitions can be made

Polarizing filter

Interferometry

- Michelson Interferometer
- Particle wave dualism
- Constructive / destructive interference

Absorption imaging

- Monochromatic light sources
- Avoiding direct reflection
- Inexpensive technique
- Elimination of distance and shadows

Direct reflection

Fluorescence imaging

- Additional spectral profiles
- Sensitizers
- Designed emission spectres
- Life time imaging

Multi spectral X-ray

- By changing the tube voltage, the "colour" of the X-rays is changed.
- Different tissues, bone, liquids and gasses have different absorptions spectres

MRI and colors

- RF and Nuclear magnetic resonance
- Obtains voxels in three spatial dimensions

Obtain three values from each voxel: Amp, t1, t2

Third-World multispectral imaging?

Examples of components pricing for multispectral imaging:

....

		and the second		
•	Multispectral satellite	100 000	000\$	
٠	PET/CT scanner	2 000	000\$	
٠	Imaging Fourier transform spectrometer	500	000\$	
٠	Commercial push broom	200	000\$	
٠	IR Focal Plane Array (FPA) imager	100	000\$	
٠	Tunable wavelength filter	50	000\$	
٠	Optical table	10	000\$	
٠	Scientific imager	5	000\$	
٠	Optical scanning stage	3	000\$	
٠	Fiber spectrometer	1	000\$	•
٠	Diffraction grating		500\$	
٠	Industrial CMOS imager / Commercial RGB camera		200\$	Limit of
٠	LEGO, LabView microcontroller, steppers, encoders,	sensors	200\$	realism
٠	Interference filter		60\$	realism
٠	Absorption filter		20\$	
٠	Polarization filter		10\$	
٠	Light Emitting Diode, LED		1\$	
٠	Google earth, multispectral satellite data		0\$	111

Wien Shift Imaging

 Simulation of multispectral X-ray

 Educational exercise

M. Brydegaard 2009

Wien Shift Imaging

LED based system for imaging transmission spectroscopy

Fig. 1. Arrangement for multi-spectral transmission microscopy employing multiple LED illumination.

Fig. 2. Normalized spectral emissions of the different LED sources used in the multi-spectral microscope.

The 200\$ microscope!

Spectral domain – Hair measurements

Fig. 5. Transmission spectra of hair strands from five individuals. The symbols in the lower part indicate λ_{max} and FWHM for each spectral band.

Spatial and spectral domain

- Spatial spectral studies
- Assessment of refraction index
- Polarization phenomena

Fig. 6. Transmission cross section for a blond hair, represented in terms of one spatial and one spectral dimension.

Object identification

- Spatial stretching by land mark technique
- Information compression
- Multivariate
 modeling
- Morphological binary operations: erosion and dilation
- False color representation

Possible further development

- Synchronization and Flashing
- Improved stray light rejection
- Reflecting objective, automated focus or spatial disconsolation
- Imaging fluorescence spectroscopy
 - Emission excitation acquisition
 - Life time imaging
- Angular discrimination
 - Back scattering geometry
 - Dark field
 - Assessment of $\mu_a, \mu_{s,g}$
 - Multi spectral microscopic tomography
- Polarization studies

RGB imagers

2D histograms

- Histograms, spectra and images
- Distribution
 decomposition

Candy counting, how many?

- Y=F(U)
- $Y = k_0 + k_1^* u_1 + \dots + k_8^* u_8$

Residuals and quality

Туре	Peaches	Green gum	Red gum	Blue tablet	Green seed	Eggs	Orange tablet
Reality	2	1	2	3	5	2	0
Estimated	1.9707	1.0408	1.8816	2.7244	5.3621	2.0872	0.0358

Multi-spectral Imaging Basics Part 3: Color spaces, Data handling and Contrast functions

Abdus Salam International Center for Theoretical Physics, 2009 Mikkel Brydegaard Division of Atomic Physics Lund University, Sweden

Descretization

Subject to	Light intensity	Light energy	Space	Time
discretization:			14-10) 14-10	
Domain:	Dynamical -	Spectral -	Spatial -	Temporal -
Discretized by:	Bits	Spectral bands	Pixels / Voxels	Frames
Resolution:	Dynamic -	Spectral -	Spatial -	Temporal -
Res. limited	Signal to noise	Channel /	Point spread	Exposure time /
by:	ratio / photons	illumination	function	flash envelope
	arte.	bandwidth		
Range:	Dynamic -	Spectral -	Field of view	Recording time

Table 1: Comparison terms associated with discretization along various domains.

Summary: Spectral sources

• There are infinetily many ways to get a finite amount of rather incomprehensible spectral data, containing information arising from a finite amount of physical phenomena.

• Regardsless whelther we access values for nuclear spin, x-ray absorption, fluorescence, reflectance, scattering coefficients or whatever phenomena we end up with the vector **U** filled with various spectral properties from each measurement **n**.

$$U_n = \begin{bmatrix} u_1 & u_1 & \dots & u_K \end{bmatrix}$$

Sources of spectral data

Question:

How to interprete **U** to get the information we are interested in?

How to find spectral properties of interest?

How to discard irrelevant data in spectral properties?

The goal

Question:

How to determine **F** when: Y = F(U),

where **Y** is the answer to question we are interested in, and **U** is a list of spectral properties?

We will refer to **F** as the spectral model or contrast function.

Colour spaces

- Cartesian coordinates [dim1 dim2 dim3 ... dimN]
- Spheric coordinates [abs ang1 ang2 ... angN]
- Conical
- Others
 - What are the units in either of the colour spaces?

Unit-less functions

 Unitless functions cancels effects of variating illumination and shadows suposing that the illumination is "white"

- Units can be cancelled by rational functions or trigonometrical functions
- When units are cancelled brightness information is lost

Dividing colour spaces

- During the creation of a contrast function one divide the N-dim space into regions
- If irrelevant information is discharged the formulation will be easier
- Gradual functions determines to which grade a pixel is a carrot
- Example:

isCarrot=1/(1+norm([Alpha Beta]- [AlphaCarrot BetaCarrot]))

Identification in colour spaces

- 3 colour channels: →
 2 unit-less angles in a spherical colour space
- The pixels of the carrots: become locations in the color plane
- The distribution has a shape, mean-vector, and variations.
- Imagine how the distribution would look like with more color channels

Interpretation of multivariate data

- Reflectance spectroscopy on damselflies, with LIDAR applications
- Two species, two sexes
- Reflectance and transmittance
- 2327 wavelength bands
- 699 individuals
- Who is who?

Mean values

1. Reducing redundancy: Separating scrap from information

Arranging groups of spectral data:

Rearranging data

3

- If individual measurements have are arranged in more than one dimension, e.g. pictures, we can temporally discard the dimensions and restore them after analysis.
- If measured parameters have a higher dimensionality than one, e.g. EEM spectroscopy, we can do the same.
- We can <u>always</u> transform to a 2D matrix representation.
- Remember original dimension
- Scale the variance when merging

Pixels 4 4 а d b С а b f е h g 4 k С m n 0 р d 4 е . . . р EEM sp2 sp1 sp3 sp4 sp5 sp6 sp8 sp9 sp7 3 sp2 sp3 sp4 sp5 sp1 sp9 ... 3 3

• Matlab: reshape

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

A new representation of M

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

V, the new base spectra

SVD/PCA - Sensitivity Analogy:

We realize that what fall into the loading c_1 is in fact R seen with the sensitivity PC1. Only that this time the sensitivity is optimized for the variance in the spectral data set.

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

- σ₁>σ₂>σ₃>....
- The importance of each component is given by the Eigen values
- The number of independent spectral components are seen as a drop
- The truncation of the representation should be based on the Eigen values
- The sum of remaining Eigen values is the residual.
- Related to Akaike information criterion

Σ , the Eigen values

- How can you you know if you have two equal spectra in a set of 699 spectra?
- How can noise end the career of an untrue scientist

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

U, the reduced representation

- The spectrum of each individual is now represented by three coefficients
- The information survives, the redundancy and noise dies
- We can reconstruct M from a truncated U, Σ and V

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

 Sum of squared residuals tells how well an individual n can be explained by the truncated representation

Outliers

- Histogram of mean squared residuals
- Finding poorly compressed individuals
- Scatter plot
- Looking closer at extreme values in U
- Redo the SVD / PCA after exclusion!
- 70 **Residual histogram** 60 50 Observation 00 **Outliers?** 20 10 -0.02 0 0.02 0.04 0.12 0.14 0.06 0.08 0.1 0.16 0.1 Mean squared residual **Outliers?** 0.15 Scatter plot 0.1 0.05 PC2 coefficient in U 0 -0.05 -0.1 -0.15 -0.2 -0.12 -0.1 -0.08 -0.06 -0.04 -0.02 0 PC1 coefficient in U
- Matlab: find(res>0.14)

Bleaching

- 5mW bleaching of ALA in skin
- 80 time frames, 2048 wavelengths band
- SVD
- Eigen values: 3 molecules involved in the process
- What goes on?
- Can we predict the spectrum after 30s?

Bleaching

- PC not pure molecular spectra
- Complete
 summarizing
- Dynamic models can be fitted
- Dynamics can be studied for different intensities

Image decomposition, Temp

17 temperatures, 10⁶ pixels

Image decomposition, Time

More than the sum of the parts

- In image and cytometry huge sample numbers N are acquired, and few parameters, K, are measured.
- E.g: 40Mpix RGB or 100.000 cells / s
- N>>K
- Decomposition of distributions
- Any difference from before?

 $Measured parameters, e.g. R_{\lambda}$ $M = \begin{bmatrix} m_{11} & m_{12} & \dots & m_{1K} \\ m_{21} & m_{21} & \dots & m_{2K} \\ \dots & \dots & \dots & \dots \\ m_{N1} & m_{N2} & \dots & m_{NK} \end{bmatrix}$

Measurements, individuals, pixels or voxels

EEM and RGB decomposition

- Unit-less processing
- Concentration of observations?
- Multidimensional histograms

EEM and RGB decomposition

- Spectra, images or photon histograms?
- CCD, pixels and bins

Standard addition

- 8 components detected
- 7 types of candy... + paper

2D principal components

- Orthogonal planes
- U reduced representation of M
- How many of each?

2. Modelling: Can data answer my question?

Who is who?

How many candies?

Can we predict the spectrum after 30s?

2D correlations

... As far as we get in flat paper?

Contrast functions

- Is there a function F, so that **Y=F(M)**?
- Better said: Is there a function F, so that Y=F(U)? Where U is a truncated representation of M.

Providing answers to the question:

Correct answer from a professional, e.g. IsMale

Reduced measured parameters, in terms of PCs

$$U = \begin{bmatrix} u_{11} & u_{12} & \dots & u_{1T} \\ u_{21} & u_{21} & \dots & u_{2T} \\ \dots & \dots & \dots & \dots \\ u_{N1} & u_{N2} & \dots & u_{NT} \end{bmatrix}$$
Truncation

Measurements, individuals, pixels or voxels

Decisive functions

- Y is a vector of true and false values
- Contour curves of F encircles data clusters^{0.6}
- Direct application of histograms

• Y=[0 0 0 1 0 1 1 0 ...]'

Quantitative functions

- Y is a vector of analog values
- F maps data point to the correct answers
- Y=[2 eggs 0 eggs 5 eggs; 5 seeds 2 seeds ...]'

Models and matrix formulation

 $y = k_0 + k_1 \sin(x) + k_2 x^2$

Link functions

- Function space of Y
- Log, [0, ∞]
- Logit, [0, 1]

$$\log(Y) = \begin{bmatrix} 1 & 0.84 & 1 \\ 1 & 0.91 & 4 \end{bmatrix} * \begin{bmatrix} k_0 \\ k_1 \\ k_2 \end{bmatrix}$$

Link function

• E.g., Length, age, transmission, reflectance...

Matlab: $\theta = \Phi \setminus \log(Y)$

Fisher's discriminating function

 $y = k_0^* 1 + k_1^* u_1 + k_2^* u_2 + k_3^* u_3 \dots + k_T^* u_T$

Who is who?

How many?

Y=F(U)

 $Y = k_0 + k_1^* u_1 + \dots + k_8^* u_8$

Matlab: K=[ones U(:,1:8)]\Y

Residuals and quality

Туре	Peaches	Green gum	Red gum	Blue tablet	Green seed	Eggs	Orange tablet
Reality	2	1	2	3	5	2	0
Estimated	1.9707	1.0408	1.8816	2.7244	5.3621	2.0872	0.0358

Polynomial non linear models $Y = F(\Phi) = \Phi \theta$

- Convergence, Taylor theorem
- Intercombinations, compare to 2D cosine transform

Fuzzy interpretations of polynomial functions

- Fuzzy logic:
 - $A, B, C \in [0...1]$
 - C=A and B \rightarrow C=AB
 - C=A or B \rightarrow C=A+B-AB
 - $C=not A \rightarrow C=1-A$
- Statistical analog
- Turtle eggs, depths and/or temperature
- Bananas, tomatoes and apples

Evaluation

$$\begin{bmatrix} u_{1,1} & u_{1,2} & u_{1,3} \\ u_{2,1} & u_{2,2} & u_{2,3} \\ u_{N,1} & u_{0,1} & u_{0,1} \end{bmatrix} = \begin{bmatrix} 1 & u_{0,1} & u_{0,2} & u_{0,3} \\ 1 & u_{1,1} & u_{1,2} & u_{1,3} \\ 1 & u_{N-1,1} & u_{N-1,2} & u_{N-1,3} \end{bmatrix} * \begin{bmatrix} k_{1,1} & k_{1,2} & k_{1,3} & k_{1,4} \\ k_{2,2} & k_{2,2} & k_{1,3} & k_{2,4} \\ k_{3,2} & k_{3,2} & k_{3,3} & k_{3,4} \\ k_{4,2} & k_{4,2} & k_{4,3} & k_{4,4} \end{bmatrix}$$

First order
system

Bleaching forecast based on initial values

Comparison of actual and predicted spectrum

Have you been feeding

Applying Akaike's information criterion enables us to compare residuals with model parameters. Lowest AICc number provides the best choice, where **N** is the sample number and **m=1..N** the model order.

Akaike values:

By observing the residuals when representing spectra with different number of PC, we can estimate the number of PCs required to represent the data set by choosing the minimal AIC value.

Training and evaluation set

 Making sure not to feed the models with inside information

0

 m_{N1}

