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IMAGES

Mirrors

T traditional
Lenses

others such as aspherical or graded index

Systems, more or less sophisticated

Methods:

1 - Geometrical optics:

simple
rays
allows accounting for aberrations
neglects diffraction

2 - Wave optics:

allows accounting for:
diffraction
aberrations

direct by using diffraction formulas
• scalar approximation

development based on linear systems theory
approximate results



1 - GEOMETRICAL OPTICS

Recall some fundamentals by thin lens

1)
o

1
i

1
f

paraxial approximation, gaussian optics

2) 1
f

1
R

f focal length

Sing conventions
o>0 if on left lens side
i>0 if on right side
Lens radius >0 if center on right side

in fig R^O, R2<0
f>0 converging lens f<0 diverging lens

When o^oo, i=Focus. Perfect lens makes parallel rays
converge to (or diverge as from back) focus.
Ex: f>0: the lens makes rays converge. It transforms
plane wave into spherical converging wave, see
below.



Images: Real or Imaginary

In general, for lenses or systems of elements:

From source to image optical path along each ray
the same (Fermat principle). Phase along each ray
the same; at image point positive interference.

In paraxial approximation, one image point
corresponds to source point; the rays from source
only have one cross point. In general rays do not all
cross at the same point; aberrations. (Here we
neglect magnification and image reversal)

In addition diffraction effect. Images by systems
without aberrations are called diffraction limited.



2 - WAVE OPTICS

MONOCHROMATIC ILLUMINATION

THIN LENS

Lens introduces phase effect on impinging wave u(P)
where P -coordinates x,y- point on entrance plane,

uout(P) = t(P) uin(P) , t(P)=e iO(p)

t(P) thickness function

jAi. A(x,y)

A(P)

0 - A(P)]

Simple computation (Goodman)
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Paraxial approx:

1-
\

x 2
+ y 2

= 1
9 9
z +yz

1-
11

1-
x 2

+ y 2

t

O(P) - iknA0 - ik(n-l) x + y 1 1
R 2

If Ujn(P) = 1, unit amplitude plane wave, (point
source at infinity) one has

Uout(P) = e1 k n A ° e

First term constant phase delay of no importance

Second term: quadratic approximation, at z=0, to a
spherical wave converging towards the focus behind
the lens, if f >0 (and then diverging) or diverging from
the lens as if originating from focus before the lens if
f<0.

Example f>0,



r=

Result:

In paraxial approximation lens adds quadratic

phase term, i.e. transforms plane into spherical

wave.

In first approximation this can be extended to plane

waves impinging at small angles. In this case the

wave is focused at a point on the focal plane.

In general case: although the lens has spherical

surfaces, the wavefront departs from spherical

shape. Aberrations.

PUPIL FUNCTION: To take into account the finite
dimensions of apertures (and also aberrations):
pupil function. Will be useful in the sequel.

For systems without aberrations (diffraction limited)

1 inside lens aperture
0 o u t s i d e

Note: here x,y point on the pupil.
Some authors include on the pupil function the field
on the pupil due to a source point.



3 - WAVE OPTICS
COHERENT IMAGING: OBJECT ILLUMINATED
WITH MONOCHROMATIC COHERENT FIELD

The problem of images is: given the field distribution
at the object find the field distribution at the image.

3-1 LENS AND PLANE OBJECT

H>b
u.

Uout

uout

field (complex amplitude) from object

field on input plane of the lens(entrance pupil),

after the lens (exit pupil),

field on image plane (defined by geom. optics)

Problem: given find
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Typical diffraction problem: the field from object can
be considered a diffraction field: from the object
plane waves in all directions (Fourier components).
u i n is result of interference on input plane. Field uo u t

at the output of lens can be obtained by multiplying
uin f°r the lens function t(P), and pupil function. Field
Uj by using one of different formulas of diffraction
theory, such as Kirchhoffs, which takes into account
the finite dimension of the aperture.

u;

• / • . . .

Let us consider decomposition of diffracted field in
plane waves (Fourier). Each plane wave is focused by
the lens at focal plane. On each plane behind the lens
all waves interfere; in the image plane interference is
expected to "reproduce" the object field.

However the image is never equal to the object,
because not all plane waves from the object enter the
lens, but only those with angle respect to axis less
than a/o, a=aperture radius, o-object distance from
the lens. In addition evanescent waves are lost.

Due to the limited aperture, from a plane incident
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wave, source at infinity, one has an Airy diffraction
pattern (see diffraction); not a simple point as
expected from the lens.

3-2 IMAGES BY A SYSTEM - COHERENT CASE

Let us now think of a general imaging system, of
which the lens is a particular case.
First, let us consider, in the source plane, an object
constituted by a simple point (source point); in
general, due to diffraction and aberrations, the image
is not a point but a "pattern". A point source can be
represented by a Dirac delta function.

Let h(x,y;xo,yo) denote the field at point x,y in the
image produced by a source point located at point
xo,yo in the source plane. In a first approximation
and no aberrations, h(x,y;xo,yo) is the Airy diffraction
pattern. In general it is a diffraction pattern.

Function h(x,y;xo,yo) which represents the impulse
response of the system is called the Spread Function

Let us assume to have an extended source. Let
uok(xo,yo) be the complex amplitude distribution
density (surface density). Each element dxodyo gives
a contribution to the field at x,y, given by

The field u ^ y ) at point x,y on image plane, due to the
object is obtained by integrating over all the object



oo

3) î fx.y) =J Juob(xo,yo) h(x,y;xo,yo) dxodyo

-oo

Typically the object will be of finite dimension and
the integrand different from zero on a finite area.

The fact that one can easily write the total field at x,y
as the integral (sum) of the contributions produced
by the different points of the object is direct
consequence of the linearity of Maxwell's equations.
According to this linearity the total field at x,y is the
superposition (interference) of the contributions
from the different elements of the object.

Linearity implies use of the basic elements of linear
systems. They are used here, when necessary.

If Spread Function only depends on coordinates
difference

4) h(x,y;xo,yo) = h(x-x0, y-y0)

the system is called isoplanatic (or space-invariant).
In practice isoplanatism means that the system
"response" is independent of the object location on
the source plane.
For a isoplanatic system one has

oo

5) Ui(x,y) =J Juob(xo ,yo) h(x-xo, y-yo) dxody(o
-oo

As already stated, in general h(x-xo ,y-yo) is a
diffraction pattern, not a simple Dirac function as in
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geometrical optics approximation. Therefore the
field at point x,y is affected by all source points and
not only by the corresponding point of the object.
This means that, due to diffraction (and aberrations),
the image is a smeared version of the object. In the
integral we recognize a (bidimensional) convolution
operation which is the mathematical formulation of
this fact.

In convolution formalism the integral can be written

6) Uj(x,y) = uob(x,y) <8> h(x,y)

where ® denotes the convolution operation1.

Well known theorem, called the convolution theorem,
states that the spectrum of a convolution of two
functions is the product of the spectra of the two
functions. In formula

7) Ui(u,v) = H(u,v) Uob(u,v)

Capital letters denote the spectra; note that they are
bidimensional Fourier transforms,

Fourier transform

Uob(u,v)

H(u,v)

of

object
Ui(x,y) image
h(x,y) spread function

oo
1 By definition u®v = j { u(xQ , yo )v(x-xo ,y-yo )dxodyo
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H(u,v), Fourier transform of the Spread Function, is
called the Optical Transfer Function, OTF or, as in
linear systems theory, the System Transfer Function,
or simply the Transfer Function. Sometimes the
adjective Coherent is added to avoid confusion with
the case of incoherent radiation, see below.
Eq. 6 is very important, both for theory and
applications, because in the realm of spectra the
convolution becomes a simple product and allows
optical images to be exploited by the techniques
commonly used in systems applications, such as
filtering in electric systems.

3-3 SPREAD FUNCTION OF A SOURCE POINT
of unit amplitude and a thin lens without aberrations
(diffraction limited)

From a source point on the axis spherical wave. In
paraxial approximation, the field incident at point
x,y on the lens, at distance ro from the source, is (see
diffraction lessons)

u i =
iko+ik(x2+y2)/(2o)

r0 o

Here a includes the constant phase term and o
denotes source-lens distance. The field u o u t at the
output plane of the lens is

" i k rx2+v2]+ ikfx2+v2

o
uout = -eiko+i knA 0
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The quadratic phase term is an approximation to a
spherical wave converging to a point at distance i
from the lens

_ 1 = I __ 1
i o f

as from geometrical optics. The field Uj at a point
X(,yi is obtained by using any diffraction formula,
e.g. the paraxial form of Huygens-Fresnel principle
(see lessons on diffraction). One obtains

i k

o f J 2i
2

dxdy

aperture

where complex constant c takes into account
constant amplitude and phase terms. By developing
the squares the phase term can be rewritten as

On image plane first term in parenthesis is zero. Let
us assume that also Fraunhofer condition is
satisfied and neglect first and second term in square
brackets. The integral reduces to

rf ^ [ ( y y { ]
u i = c j j e dxdy

aperture

This integral was evaluated in the diffraction section,
when the field diffracted from an aperture uniformly
illuminated was calculated in the Fraunhofer
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approximation (pg 2.9-2.13). In terms of energy the
result is the well known Airy pattern. Therefore, in
the considered limits, and apart from a complex
constant factor, the spread function of a source point
is the diffraction pattern, in the Fraunhofer region, of
a uniformly illuminated aperture. In other words, the
spread function of a source point at finite distance is
proportional to that of the source at infinity. Note
also that when the source distance is infinite the
pattern location is on the focal plane. This
corresponds to the well known fact that in general, a
lens transfers on its focal plane the Fraunhofer
patter of the field on its aperture.

SPREAD FUNCTION = FOURIER TRANSFORM OF
THE PUPIL FUNCTION.

VALID IN GENERAL. Easy to understand by plane
wave development

CUT OFF FREQUENCY

3 - 4 LINE SPREAD FUNCTION

Let the object be a line, infinitely thin and concident
with the y axis:

From 5) one obtains

oo

ui(x)= Jh(x,yo)dyo
—oo
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3 - 5 ABERRATIONS

According to Wolf function W(x,y) is the departure
from spherical shape in the exit pupil. Phase
distortion due to aberrations kW(x,y).

Effect of aberration on diffraction patter: lowering
the maxima, filling the zeros and rising the minima.

Gaussian
reference sphere

Plane of
exit pupil

W(x,y) from Born and Wolf

Gaussian
image plane

Quality of a system is described by Strehl ratio for
source point:

g _ Intensity in the (nominal) central maximum
Theoretical intensity with no aberrations

General definition suitable also for partial
coherence and for aberrations introduced by
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propagation in random media, such as turbulent
atmosphere.

An image is well corrected if S not less than 0.8.

It can be shown, for small enough aberrations, that
intensity at point P is

i(P) = 1 - k2 (A<DP)
2

where (A<l>p)2 mean square deformation of the
wavefront and k wavenumber. It follows that
condition S > 0.8, requires |AO|<A/14.
(Criterion by Rayleigh A/4 for spherical aberration)

Best focus.

Point on axis. Aberrations function Wa, with respect
to a sphere centered on best focus is expanded in
terms of r, position on pupil, or [Q.~r/d^ field angle)

Wa = a4 r4 + ag r6 +... = W4

primary aberrations, W6 secondary aberrations
and so on.
For points off axis in general there are also angles,
total power of primary aberrations is always 4,
including angles. Primary Seidel aberrations.
(Extended theory: Born and Wolf, Goodman,see also
R.W. Ditchburn for instrument applications)
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EFFECT OF ABERRATIONS ON OTF

Generalized Pupil Function including W

P(x,y) = exp( ikW) inside pupil

= 0 outside

W, phase factor

W does not affect total intensity, but adds phase

factor to the different (spatial) frequencies

Blurring of the image.

Example in terms of rays (recall source point): the

normal to the wavefront, (ray) changes direction and

the rays no longer have a common point.

In terms of plane wave development of the field, each

wave has a change in phase, and they are no longer

focussed at the same point.

In general lowering of maxima, disappearing of

zeros, increase of minima
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3 - 6 IMAGING - INCOHERENT CASE

The most common light found in nature, emitted by
bodies much larger than the wavelength, is
incoherent radiation. The emitting atoms of a body,
emit randomly, in time and space, wave trains which
are completely uncorrelated, unless the atoms are
very near each other, with respect to wavelength.
Only the laser emits coherent radiation. At a point
outside an emitting source (not a laser) the field is
constituted by many wave trains with random phase,
which interfere with each other but continuously and
rapidly change. One cannot think of a "wave", as in
the case coherence, but rather of energy. For
incoherent radiation one has to deal with the
modulus square of the field.

Although the general case is partial coherence, both
in time and space, we will consider here only the
limiting case of incoherent quasi-monochromatic
light, as the case corresponding to the coherent
monochromatic one already considered.

Quasi-monochromatic light has a bandwidth Av
which is very small with respect to the central
frequency v, that is Av/v«l.

Quantity of interest here is the average value of the
intensity in a long time with respect to the period of
oscillation (infinite time). In practice the response
time of the eye or of typical instruments. In this case
approximating time and space incoherent radiation
with monochromatic (time coherent) radiation v, is a
good approximation. Frequency ^central frequency
of incohrerent radiation, Therefore the radiation is
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only spatially incoherent.

The instantaneous intensity Iinst(P) a t a point P is
the field square (see diffraction). The space
coherence of a field is described by the field
correlation function BU(P,P') defined as

8) BU(P,P) = <u(P) u*(P>

Asterisk as usual denotes complex conjugate and
brackets infinite time average. The average intensity
I(P) is given by (assume homogeneity)

I(P) = lim <u(P)u*(P')>
F->P

For spatially incoherent radiation:

9) BU(P,P') = I(P) S(P-P')

The intensity in the image of incoherent radiation is

oo oo

I(x,y)=<ui(x,y)Ui(x,y)>=J J
-co -oo

h{x-xo,y-yo)h*(x-xo,y'-yo) dxodyodx'od'yo

where average and integral operations have been
interchanged and the fact that the impulse response
does not depend on time has been taken into
account. This relationship holds for partially
coherent light and could be further developed.
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In the case of complete incoherence, introduction of
Eq. 9 gives2 the important final result:

oo

10) I(x,y) = J j I(xo,yo) |h(x-xo,y-yo)| dx ody o

- c o

Conclusions for INCOHERENT CASE:

-Intensity

-Convolution relationship between
source intensity and (incoherent)
point spread function

-The incoherent point spread function
is the modulus square of the
coherent spread function.

Example. The incoherent spread function of a source
on the axis of a thin lens free from aberrations
(already considered for the coherent case): is the Airy
function, (Airy function is defined as the modulus
square of the Fraunhofer diffraction pattern, see
lessons on diffraction) centered on the geometrical
image point.

Recall that Jf(x)S(x~a}dx =

20



Let Jo and Jj and H Fourier Transforms of the
intensities of object, image and spread function
respectively. By convolution theorem:

11)

His called Incoherent Optical Transfer Function;
its modulus:

MODULATION TRANSFER FUNCTION, MTF.

Generally normalization to 1 at zero frequencies,
where there is the maximum (see e.g. Goodman).

General relationship between incoherent, H
(normalized), and coherent, H, transfer functions:

oo

J |H(u,v)H*(u+fx,v+fy)dudv

12)
CO

jj|H(u,v)|2dudv
—oo

valid for systems both with and without aberrations.

For coherent systems one has (see diffraction)
H(u,v) = P(Aiu,Aiv)

X wavelength, i image distance from the lens.
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For incoherent system, introduction of H(u,v) into Eq.

12 shows that H (normalized) is the spatial

autocorrelation function of the pupil function:

CO

J JP(/liu,Aiv)p(Aiu+fx,Aiv+fy)dudv

HffX.fy) = —

JJ P(u,v)dudv
—oo

Recall P(x,y) real function of modulus one.

Denominator=pupil area. Numerator the common

area of pupil and displaced pupil.

FOR INCOHERENT SYSTEMS THE SPECTRUM IS

DIFFERENT THAN FOR COHERENT

In particular it has a larger widht (due to convolution

of the pupil function)

Consequence the same system gives different images

with coherent or incoherent radiation.

Advantages and disadvantages depend also on the

object.
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Effect of aberrations on incoherent systems

ALWAYS DECREASE MTF

In general lower the contrast of each spatial

frequency component, leaving the cut off unchanged.

However the higher frequencies can be severely

reduced, so that, in practice cut off can be much lower

than in the diffraction limited case.

Aberrations can also give rise to negative values of

OTF in some ranges of frequencies. Consequence:

constrast reversal in image, that is intensity maxima

can become zeros and viceversa.

Typical example of this case is defocusing error

1.0

Defocus OTF for a square pupil.
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4 - RESOLVING POWER

1- Rayleigh criterion (v diffraction)

2- OTF or MTF half width

3 Degrees of freedom of images

Superresolution
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