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Models of the AtomModels of the Atom

Historical PerspectiveHistorical Perspective



Early Greek Theories

Democritus (400 B.C.) 

• That all matter is made up of various 
imperishable, indivisible elements which he 
called atoma (sg. atomon) or         “indivisible 
units", from which we get the English word atom.

• This led to the idea of atoms in a void



Aristotle (350 B.C.)
• Aristotle modified an earlier theory that matter 

was made of four “elements”: earth, fire, water, 
air.

• Aristotle was wrong. However, his theory 
persisted for 2000 years.

Early Greek Theories



John Dalton

1800- Dalton proposed a modern atomic model 
based on experimentation not on pure reason

• Elements are made of tiny particles called atoms. 
• All atoms of a given element are identical. 



John Dalton
• The atoms of a given element are different from 

those of any other element; the atoms of different 
elements can be distinguished from one another by 
their respective relative weights. 

• Atoms of one element can combine with atoms of 
other elements to form chemical compounds; a 
given compound always has the same relative 
numbers of types of atoms. 

• Atoms cannot be created, divided into smaller 
particles, nor destroyed in the chemical process; a 
chemical reaction simply changes the way atoms are 
grouped together. 



Sir Joseph John Thomson

• In 1897 J.J. Thomson determined that they were charged 
particles by using electric and magnetic fields 
• Determined the mass to charge ratio (e/m) 1.76 x 1011 C/kg .
• No matter the metal used, you still get the same e/m.  
Concluded that all atoms contained electrons
• Came up with the concept of “Plum pudding model”





400 BC

Democritus

Atomic 
concept

1800s

Dalton

Atomic model

(no subatomic particles)

1897

Thomson discovers the 
electron

“Plum pudding model”

No nucleus or protons



1909 – Gold Foil Experiment

• Earnest Rutherford urged 
two of his graduate 
assistants – Geiger and 
Marsden – to  create a way 
to probe the internal 
structure of the atom.

• Rutherford analyzed the 
data for two years before 
putting forth a new atomic 
model.



1910 – Robert Millikan
• In 1909 Millikan started the oil 
drop experiment that would 
determine the  charge of an 
electron.

• Determined the charge of the 
electron to be 1.9 x10-10C.

• Calculate the mass of the 
electron. 

•Tried to prove Einstein’s idea of 
a photon incorrect.  Instead he 
proved Einstein right and won the 
Nobel Prize.



Oil-Drop Experiment



Earnest Rutherford
• Worked for Thomson in 
1895 (two years before the 
discovery of the electron)

• 1909 – Urged Gieger and 
Marsden to create the Gold 
Foil Experiment

• 1911 – Created the nuclear 
model of the atom

• 1920 – Hypothesized the 
existence of the neutron



1913 – Isotopes

• J.J. Thomson discovered 3 isotopes of Neon 
in canal rays.

• All this proved was that the same element 
could  have different atomic masses.  The 
was no explanation why.

• Below are the three isotopes of hydrogen: 
hydrogen, deuterium, and tritium. 



1919 – Protons

In 1919, Rutherford 
produced H1+ ions when 
alpha particles are shot 
into nitrogen gas.  He 
concluded the ions had to 
come from the nitrogen 
gas and that since 
hydrogen had an atomic 
number of one, it must be 
a subatomic particle.



1932 – Neutrons
• 1920 Rutherford 
hypothesized the existence of 
neutrons.

• 1930 Bothe found a new 
type of ‘radiation’

• 1932 James Chadwick (on 
right) did a series of 
experiments that proved that 
this radiation is actually a 
neutral particle with 
approximately the same mass 
of a proton.



1910 – Millikan   
determined mass and 
charge of electron

1911 – Rutherford 
creates nuclear model 
of atom

1913 – Thomson 
discovers isotopes

1905 – Einstein 
proves atoms 
exist

1909 – Rutherford Gold Foil 
Experiment



Models of the AtomModels of the Atom

BohrBohr’’s Models Model



Bohr’s Model
In its final form, Bohr's theory used the following concepts, 
known as Bohr's hypotheses, to explain the spectrum of 
hydrogen. 
A) The hydrogen atom included a positively charged nucleus 
(proton) and a negatively charged electron orbiting in a circular 
motion around the nucleus. 
B) The electron could temporarily remain in a particular state 
(an orbit having a specific radius), provided that the angular 
momentum of the electron associated with that radius had a 
value that was an integral multiple of                       where h is 
Planck's constant). 
C) Radiation is emitted from the atom when the electron 
"jumps" from a higher energy E2 (larger orbit) to a lower energy
E1 (smaller orbit). 
D) When such radiation is emitted, its frequency is 
determined by the Einstein frequency condition 



Bohr obtained values of the energies of various 
states or levels of the hydrogen atom by assuming 
that an electron with velocity v rotates in a circular 
orbit of radius r around the nucleus with an angular 
momentum of 

Bohr’s Model Contd…

This relationship expresses Bohr's second postulate in 
mathematical form. The electron mass is me, and the 
integer n is called the principal quantum number.

(1)

•Angular Momentum



Using equations (1) and (2) to eliminate v leads to 
the formula for quantized orbits of the electron (Bohr 
orbits) described by the following radii: 

where       is the radius of the first Bohr orbit (n = 1) given by 

This value effectively describes the radius of the 
hydrogen atom in its ground state, or lowest-lying 
energy state (n =1). 

Bohr’s Model Contd…

(3)

(4)



Newton's second law of motion, equating the sum 
of all forces acting on a body to the product of its 
mass and its acceleration, was then used to equate 
the electrical force of attraction between the 
negatively charged orbiting electron and the 
positively charged nucleus to the radial acceleration 
associated with the angular rotation of the electron 
around the much heavier nucleus (a proton):

where e is the electron charge and    is the permittivity of a vacuum.

Bohr’s Model Contd…

(2)

•Orbit



The total energy for a specific orbit can be obtained 
by summing the kinetic energy and the potential 
energy of the electron with respect to the nucleus: 

Bohr’s Model Contd…

(5)

where the first term is the kinetic energy of angular 
motion and the second term is the potential electrical 
energy of attraction.

•Energy



Using the value of r given in (3) as the separation 
distance of the positive and negative charges. 
Eliminating v by means of (2) gives the following 
value for the energy:

Bohr’s Model Contd…

(6)



Substituting the expression (3) for r into (6), we find 
that the electron can have only certain discrete 
negative values of energy
associated with the various values of n, where n is a 
positive integer such that : 

Bohr’s Model Contd…

(7)

and where        is given as

(8)



Inserting Reduced Mass

Bohr’s Model Contd…

For a slightly more accurate value of the energy we 
must use the reduced mass   of the combined 
electron and proton system 

instead of the mass of the electron as in (8). We will use the 
reduced mass when we solve this problem using quantum 
mechanics. The reduced mass takes into account the finite size of 
the nucleus and the fact that both the electron and the proton 
rotate about the center of mass of the electron-proton system, 
rather than rotating about the center of mass of the proton as 
assumed in the Bohr theory. 

(9)



Energy Levels

Bohr’s Model Contd…

Thus, from (7) we find that the electron can have any one 
of a series of negative energies, which are referred to as 
energy states or levels (these terms are used 
interchangeably). The lowest value of energy (the most 
negative) corresponds to setting n = 1 in (7). Since this is 
the lowest energy, it is called the ground state; every 
atom has such a lowest energy state or ground state. 
The ground state is the energy state that normally 
occurs in nature unless additional energy in the form of 
heat or light is applied to the atom to raise it to a higher 
state. 



Bohr’s Model Contd…
The values of the negative energies for the hydrogen 
atom are shown in Figure below



Frequency and Wave Length of Emission Lines

Bohr’s Model Contd…

Using Bohr's fourth hypothesis, one can estimate the 
frequency      of radiation occurring when an electron makes 
a transition from a higher energy level     to a lower level

as 

(10)

This formula relates the frequency of radiation to the 
energy differences between the various "quantized" 
negative energy states i and j. 



Bohr’s Model Contd…
Using (10) and the relationship                 we can 
obtain

(10)

where                                                   is referred to as the Rydberg constant for 
hydrogen. 



Binding Energy

• Energy needed to remove an electron (also known as 
ionization energy)

• For hydrogen measured ionization energy = 13.6eV

• This corresponds to the energy between the ground 
state and E=0

• The transition between the energy levels give rise to the
spectral lines



Atomic SpectraAtomic Spectra



Line Spectra
The spectrum produced by a gas or vapour (following an 
electric discharge) contains only a few wavelengths 
(colours) and some of the wavelengths are missing. This 
is called a Line Spectrum. Each atom has its own 
spectrum 

Line spectra of some elements

•The existence of these lines cannot be explained by 
classical Physics 



Hydrogen spectrum

Figure  shows hydrogen spectral lines in the visible 
region. These were the first lines to be discovered. There 
are 4 lines at 210 nm, 434 nm, 486nm and 656 nm (red). 
These lines form the Balmer series named after the 
scientist who came up with an empirical formula for the 
wavelengths of these lines.
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Hydrogen spectrum

Later other series were discovered in the UV and 
IR region

Lyman Series: UV region

Paschen Series : IR region
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Hydrogen spectrum

Brackett Series: IR region

Pfund Series ; IR region
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Any proposed atomic theory must be able to explain 
these spectra.



Line spectra

Line spectra cannot be explained by the 
classical physics. 
We explain this phenomenon by utilizing two 
new concepts:
1. The particle nature of light (photons)
2. Energy levels: An atom can only have 

certain discrete energy values- we say 
that their energy is quantized. These 
energy values are called energy levels.



Emission spectrum
When an electron makes a transition from a higher 
energy level to a lower energy level ,the difference in 
the energy is emitted out as a photon . Each 
transition produces a photon of a certain energy and 
this appears as a line of certain wavelength on the 
spectrum. These lines constitute the Emission 
spectrum



Absorption spectrum
When white light passes through a gas, the gas 
absorbs light of certain wavelengths theta are present 
in its emission spectrum. The resulting spectrum has 
some colours (wavelengths ) missing replaced by dark 
lines. This is called the Absorption spectrum.



Quantum Theory of Atomic Energy Quantum Theory of Atomic Energy 
Levels Levels 



Quantum MechanicsQuantum Mechanics

Bohr’s theory established the concept of atomic 
energy levels but did not thoroughly explain the 
“wave-like” behavior of the electron.
It can only be applied to one-electron systems like 
Hydrogen atom and not for heavier atoms.
It cannot  predict the intensity of spectral lines.
Current ideas about atomic structure depend on the 
principles of quantum mechanics, a theory that 
applies to subatomic particles such as electrons.  
Electrons show properties of both waves and 
particles.



The first clue in the development of quantum 
theory came with the discovery of the de Broglie 
relation.
In 1923, Louis de Broglie reasoned that if light 
exhibits particle aspects, perhaps particles of 
matter show characteristics of waves.
He postulated that a particle with mass m and a 
velocity v has an associated wavelength.

The equation                     is called the de Broglie 
relation.

Quantum MechanicsQuantum Mechanics

de Broglie



If matter has wave properties, why are they not 
commonly observed?
The de Broglie relation shows that a baseball 

(0.145 kg) moving at about 60 mph (27 m/s) has 
a wavelength of about 1.7 x 10-34 m.

This value is so incredibly small that such waves 
cannot be detected.

Electrons have wavelengths on the order of a few 
picometers (1 pm = 10-12 m).

m107.1 34
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Quantum MechanicsQuantum Mechanics



Quantum MechanicsQuantum Mechanics

Quantum mechanics is the branch of physics 
that mathematically describes the wave 
properties of submicroscopic particles.
We can no longer think of an electron as having a 
precise orbit in an atom.
To describe such an orbit would require knowing 
its exact position and velocity.
In 1927, Werner Heisenberg showed (from 
quantum mechanics) that it is impossible to know 

both simultaneously.

Heisenberg



Quantum MechanicsQuantum Mechanics

Heisenberg’s uncertainty principle is a relation 
that states that the product of the uncertainty in 
position (Δx) and the uncertainty in momentum 
(mΔvx) of a particle can be no smaller than h/4π. 

When m is large (for example, a baseball) the 
uncertainties are small, but for electrons, high 
uncertainties disallow defining an exact orbit.

π4
hvmx x ≥ΔΔ ))((



Wave Function

For every dynamical system  there exists a 
wave function Ψ that is a single valued 
function of the parameters of the system and 
of time, and from which all possible 
predictions of the physical properties of the 
system can be obtained.



Wave Function

Ψ = Ψ(r,t)      in general, a complex number function

(Real) Probabilty density P(r,t) = Ψ*Ψ = |Ψ(r,t)|²

Probability (in volume d³r)   P(r,t) d³r = |Ψ(r,t)|² d³r

Normalisation: ∫ |Ψ(r,t)|² d³r = 1 over all space 



Operators
To every observable in classical mechanics (such as 

position, momentum, and energy), there corresponds a 
linear operator in quantum mechanics. An experiment 
that measures a value of such an observable is simulated 
in the theory by “operating” on the wave function of the 
system with the corresponding operator.



In any measurement of the observable a that 
corresponds to the operator Â, the only values that will 
ever be observed are the eigenvalues of that operator, 
which satisfy the eigenvalue equation

Operators

( ) ( )ˆ , ,A x t A x tΨ = Ψ



Average 
If a system is in a state described by a wave 

function Ψ (x,t), then the average value of the 
observable a (measured once on many identical 
systems) is given by  

( ) ( )

( ) ( )

*

*

ˆ, ,

, ,

x t A x t dx
a

x t x t dx

∞

−∞
∞

−∞

Ψ Ψ
=

Ψ Ψ

∫

∫



Time Evolution

The wave function of a system evolves in time 
according to the time dependent Schrödinger equation

( ) ( ) ( )
2

2

,
,

2
x t

i U x x t
t m x

∂Ψ ⎡ ⎤∂
= − + Ψ⎢ ⎥∂ ∂⎣ ⎦

Schrodinger



Plausible Arguments for Schrödinger Equation

( ) ( )2 2
2

2 2

, ,
0

x t x t
c

t x
φ φ∂ ∂

− =
∂ ∂

Electromagnetic waves: de Broglie waves, non-relativistic case:

( ) ( ), expx t A i kx tφ ω= −⎡ ⎤⎣ ⎦

E p k E cpω= = =

( ) ( ), exp ix t A px Etφ ⎡ ⎤= −⎢ ⎥⎣ ⎦

thus, for a photon

( )
2

,
2
pE K U U x t
m

= + = +

( ) ( ), exp ix t A px Et⎡ ⎤Ψ = −⎢ ⎥⎣ ⎦

assume, by analogy, that 
this is a solution of the 
equation we are looking for

( ) ( ) ( ),
exp ,

x t iE i iEA px Et x t
t

∂Ψ ⎡ ⎤= − − = − Ψ⎢ ⎥∂ ⎣ ⎦

( ) ( ) ( ),
exp ,

x t ip i ipA px Et x t
x

∂Ψ ⎡ ⎤= − = Ψ⎢ ⎥∂ ⎣ ⎦
( ) ( )

22

2

,
,

x t p x t
x

∂ Ψ ⎛ ⎞= − Ψ⎜ ⎟∂ ⎝ ⎠

- we neglect the rest energy, it is 
now our reference (zero) for 
measuring the potential energy

( ) ( ),
/ ,

x t
E i x t

t
∂Ψ

= Ψ
∂

( ) ( )
2

2 2
2

,
/ ,

x t
p x t

x
∂ Ψ

= − Ψ
∂

( ) ( ) ( ) ( )
22

2

, ,
/ , / ,

2
x t x t

i x t x t U
t m x

∂Ψ ∂ Ψ
Ψ = − Ψ +
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( ) ( ) ( ) ( )
22

2

, ,
, ,

2
x t x t

i U x t x t
t m x

∂Ψ ∂ Ψ
= − + Ψ

∂ ∂
- the time-dependent 
Schrödinger Equation



Comments

This equation is inherently complex, and its solutions are complex (unlike classical 
waves, where the use of complex numbers is just a mathematical convenience).

This is a linear homogeneous partial differential equation, it is first-order in the time 
derivative and the second-order in the space derivative (remember, non-relativistic K~p2).

In contrast to the classical mechanics,  where both the initial coordinate and momentum 
must be specified to determine the subsequent motion (the Newton’s 2nd Law contains the 
second-order derivative in time), in quantum mechanics it is sufficient to specify the wave 
function Ψ(x,t0) for all x at some time t=t0 to determine it for all subsequent times.

( ) ( ) ( ) ( ) ( ) ( )
22 2 2

2 2

, ,
, , , ,

2 2
x t x t

i U x t x t U x t x t
t m x m x

∂Ψ ∂ Ψ ⎡ ⎤∂
= − + Ψ = − + Ψ⎢ ⎥∂ ∂ ∂⎣ ⎦

A differential equation by itself does not fully determine the solution, we need to impose 
boundary conditions.

This was a plausibility argument, not a derivation.  We believe the Schrödinger equation 
not because of this argument, but because its predictions agree with experiment.



Time-Independent Potential
Suppose that the potential 

is independent of time

( , ) ( ) ( )x t x T tψΨ =This equation can be solved by the “separation of variables” method:

( ) ( ),V x t V x=

( ) ( ) ( ) ( ) ( ) ( ) ( )
22

22
dT t d x

i x T t U x x T t
dt m dx

ψ
ψ ψ= − +

( ) ( ) ( ) ( )
22

2

, ,
,

2
x t x t

i U x x t
t m x

∂Ψ ∂ Ψ
= − + Ψ

∂ ∂

- divide both sides by

( )
( )

( )
( ) ( ) ( )

22

2

1 1
2

dT t d x
i U x x

T t dt x m dx
ψ

ψ
ψ

⎡ ⎤
= − +⎢ ⎥

⎣ ⎦

( ) ( )x T tψ

- two sides depend on different 
independent variables; thus, both 
sides must be equal to the same 
x- and t-independent constant!

( ) ( )dT t
i ET t

dt
= ( ) ( ) ( ) ( )

22

22
d x

U x x E x
m dx

ψ
ψ ψ− + =

the time-independent S. Eq.

- the constant E is an 
eigenvalue of 

Hamiltonian operator

• The time-independent Schrödinger equation is 
an eigenvalue equation for the Hamiltonian operator:

(operator × function=number × function)
Ĥ Eψ ψ=



Time-Independent Potential (cont’d)

• The t-dependent equation only tells us that T(t) depends on the energy E. 
It doesn’t tell us what the energy actually is. For that we have to solve the x-dependent eq.

• T(t) does not depend explicitly on the potential V(x). But there is an implicit dependence
because the potential determine possible values for the energy E.

• Even though the potential is independent of time, the wavefunction still oscillates in time. 
However, the probability ~ Ψ *(r,t) Ψ (r,t) is time-independent (stationary solution):

resembles ( )exp i tω− , thus, indeed, we can associate E with the total energy K+U

( ) 2 2* / / *, ( ) ( ) ( ) ( ) ( )iEt iEtx t x e x e x x xψ ψ ψ ψ ψ ψ+ −= = =

( ) exp iEtT t −⎛ ⎞= ⎜ ⎟
⎝ ⎠ ( ) ( ), expE

iEtx t xψ −⎛ ⎞Ψ = ⎜ ⎟
⎝ ⎠

( )E xψ − solution of the t-independent 
S.Eq. that corresponds to E

( ) ( )dT t
i ET t

dt
=

( ) ( ) ( ) ( )
22

22
d x

U x x E x
m dx

ψ
ψ ψ− + =

The rest of Chs. 5 and 6 – solving the TISE for several important potentials.



SCHRODINGER EQUATION IN SPHERICAL 
COORDINATES

Spherical Coordinates



• Schrodinger's equation says

SCHRODINGER EQUATION IN SPHERICAL 
COORDINATES

(1)

the Hamiltonian operator H is obtained from the 
classical energy



Using

SCHRODINGER EQUATION IN SPHERICAL 
COORDINATES

or

(2)

(3)

Thus (4)

where (5)Laplacian



In spherical coordinates the Laplacian takes the form

SCHRODINGER EQUATION IN SPHERICAL 
COORDINATES

(6)

the time-independent Schrodinger equation reads 

(7)



• looking for solutions that are separable into products: 

Separation of Variables

(8)

Equation (7) becomes,

(9)



Separation of Variables



(10)

(11)

Separation of Variables



• Equation (11) determines the dependence 
of                     multiplying by             it 
becomes

The Angular Equation

(12)

This equation occurs in the solution to Laplace's 
equation in classical electrodynamics. 



We try separation of variables

The Angular Equation

(13)

(14)



The first term is a function only of    , and the 
second is a function only of      , so each must be 
a constant. 
This time we'll call the separation constant

The Angular Equation

(16)

(15)



The solution to equation (16) is simple

The Angular Equation

(17)

Now, when    advances by       we return to the same 
point in space (in spherical coordinates), 

m must be an integer:

(18)

(19)

Which means,

or



The    equation, 

The Angular Equation

(20)

may not be so familiar. The solution is

(22)

where       is the associated Legendre function,
defined by

(21)



and          is the        Legendre polynomial define
by the Rodrigues formula:

The Angular Equation

(23)

For example,



The Angular Equation
The first few Legendre polynomials,



Note that,

The Angular Equation

• is a polynomial (of degree l) in x, and is even 
or odd according to the parity of l
• But             is not, in general, a polynomial if m is 
odd it carries a factor of 

•Since                                     therefore,            is 
always a polynomial in



The Angular Equation



• Notice that l must be a nonnegative integer for 
the Rodrigues formula (23) to make any sense

• If              then Equation (22) says                For 
any given l,

• Then for any given l, there are (2l + 1) possible 
values of m: 

The Angular Equation

(24)



• Remembering the normalization equation

the volume element in spherical coordinates is

so the normalization condition becomes,

Spherical Harmonics



Spherical Harmonics
It is convenient to normalize R and Y individually: 

and

The normalized angular wave functions are called 
the Spherical Harmonics



Spherical Harmonics

(26)

•These functions are orthogonal

(25)



Spherical Harmonics



Radial Equation

Notice that the angular part of the wave function,           
is the same for all spherically symmetric potentials; the 
actual shape of the potential, V(r), affects only the radial 
part of the wave function, R(r), which is determined by 
Equation (10): 
Changing variabels in (10)



Radial Equation
Hence,

This is called the Radial Equation

With normalization condition

(27)



• Potential for hydrogen atom

and the radial equation becomes

Radial Equation

(28)

(29)

• Our problem is to solve this equation for u(r) and 
determine the allowed electron energies E. 



Let

The Radial Wave Function

(30)

manipulating equation (29)



Again let

The Radial Wave Function

(33)

So that

(31)

Next we examine the asymptotic form of the solutions.           
the constant term in the brackets dominates, 

so (approximately) 

(32)



The general solution of equation (33) is

The Radial Wave Function

(35)

(34)



As             , the centrifugal term in (32) 
dominates approximately then 

The general solution of above equation is

The Radial Wave Function

(36)



• To peel off the asymptotic behavior introducing a 
new function

The Radial Wave Function

(39)

Finding        and          interms of 

(37)

(38)



Using (38) and (39) in (32),

The Radial Wave Function

(40)

Finally seek the solution interms of power series of



The Radial Wave Function

Replacing dummy index  j by j+1

(41)

(42)



Inserting (41) and (42) in (40),
The Radial Wave Function

Equating the coefficients of like powers yield

or
(43)



The Radial Wave Function

This recursion formula determines the coefficients, and hence
the function         .

For large j above recursion formula becomes

so

Where,
(a constant to be fixed by normalization)



Therefore

The Radial Wave Function

and hence
(44)

which blows up at large    .



The Radial Wave Function
• There is only one way out of this dilemma: The 

series must terminate. There must occur some 
maximal integer,          , such that

Evidently from equation (43)

(45)



Defining

The Radial Wave Function

the so-called principal quantum number, we have from (45) 

But

so the allowed energies are

This is famous Bohr’s Formula

(47)

(46)



Using (31) and (46), we find that

The Radial Wave Function

where

is called the Bohr’s radius.



• Evidently the spatial wave functions for 
hydrogen are labeled by three quantum 
numbers (n, l, and m): 

The Radial Wave Function

(50)

where

(48)

The ground state (that is, the state of lowest energy) is the case n = 1; 

(49)

Evidently the binding energy of hydrogen



Quantum Numbers
The three quantum numbers:

n: Principal quantum number
ℓ: Orbital angular momentum quantum number
mℓ: Magnetic (azimuthal) quantum number

The restrictions for the quantum numbers:
n = 1, 2, 3, 4, . . . 
ℓ = 0, 1, 2, 3, . . . , n − 1
mℓ = −ℓ, −ℓ + 1, . . . , 0, 1, . . . , ℓ − 1, ℓ

Equivalently:
n > 0
ℓ < n
|mℓ| ≤ ℓ

The energy levels are:



For arbitrary n, the possible value of l are

Degeneracy

For each l, there are (2/+ 1) possible values of m so 
the total degeneracy of the energy level En is 







The polynomial       can be written as

Normalized Hydrogen Wave Function

where

(52)

is an associated Laguerre polynomial, and 

(51)

is the qth Lagnerre polynomial 







The normalized Hydrogen wave functions are

Normalized Hydrogen Wave Function

These are exactly solvable and mutually orthogonal



Probability Distribution Functions

•We use the wave functions to calculate the 
probability distributions of the electrons.
•The “position” of the electron is spread over 
space and is not well defined.
•We may use the radial wave function R(r) to 
calculate radial probability distributions of the 
electron.
•The probability of finding the electron in a 
differential volume element dτ is:



Probability Distribution Functions

R(r) and P(r) for the lowest-lying states of the hydrogen atom.



Probability Distribution Functions



ANGULAR MOMENTUM OF ATOMS

Orbital Angular Momentum
• The orbital angular momentum L is a vector 

quantity that is found to have a magnitude given  
by

where / is the azimuthal quantum number. 



• For / = 0 (s states), there is no orbital angular 
momentum, which implies that there is no net 
rotation of the electron charge cloud. 

• This does not imply that there is no electron 
motion but only no net motion for this particular s 
state. 

• The solution for the angular momentum (using 
the Schrödinger equation) also suggests that the 
z component of the angular momentum   is 
quantized and of the form

Orbital Angular Momentum



• The magnetic quantum number m is associated with 
rotation of the electron about the z axis through the 
angular rotation    , with integral values up to              

• The various possible values of angular momentum       
represent the z components of the angular 

momentum, for which there will be 2/ +1 different 
values. 

• Thus, various states will have their angular 
momentum vectors precisely oriented in certain 
discrete orientations, as shown in Figure in next 
slide.

Orbital Angular Momentum



Orbital Angular Momentum

Possible values of the orbital 
angular momentum vector for 
the case / = 2, along with the 
components projected onto 
the z axis 



Zeeman Effect
• If a magnetic field is applied to an ensemble of atoms, the levels will 

split into the associated angular momentum states (except for s states, 
in which m is always zero).

• This will provide 2/ + 1 states of slightly different energy for each / value 
associated with the nth quantum number.

• This is due to the alignment of electrons with the magnetic field and the 
splitting of energy into components associated with the field. 

• The multiple values for the energies of these states lead to many more 
possible transitions between states. 

• Thus, when electrons jump from one state to another, more 
wavelengths are emitted when a magnetic field is present than when it 
is not present; this is known as the Zeeman effect. 

Orbital Angular Momentum



Spin Angular Momentum

• When the spectral lines of hydrogen (produced when radiative
transitions occur between energy levels) were first observed 
with an extra-high-resolution spectrograph

• It was seen that there was a splitting of the emission lines 
similar to that observed with the Zeeman effect, except that 
there was no magnetic field present.

• This implied that the energy levels were split into several 
components, and that the theoretical interpretation of this 
splitting would require another component in the energy 
Hamiltonian in Schrodinger's equation. 

ANGULAR MOMENTUM OF ATOMS



Spin Angular Momentum

• Pauli suggested that the electron had an intrinsic 
spin angular momentum around its own axis 
with a value of either +h/2 or -h/2. 

• The value of the electron spin angular momentum 
vector S was obtained from the appropriate 
Schrodinger equation to be

where s is the spin quantum number with a value of 1/2 .

• The z components have values of



Total Angular Momentum

• In classical terms, the total angular momentum 
vector J consists of the vector sum of the orbital 
angular momentum vector L and the spin angular 
momentum vector S:

ANGULAR MOMENTUM OF ATOMS

The total angular momentum could have any possible 
value between L + S and L - S. 



Total Angular Momentum
• The magnitude of J is given by 

or



Total Angular Momentum

The two possible values of 
the total angular 
momentum J for a one-
electron atom



Total Angular Momentum

Few Examples



ENERGY LEVELS ASSOCIATED WITH ONE-
ELECTRON ATOMS

• With the Bohr theory, energy levels of the hydrogen atom are 
arranged according to the value of the n quantum number

• Using quantum mechanics, we realize that the electron also has 
quantum numbers associated with the orbital angular momentum l 
and the magnetic quantum number m

• We later added as a relevant quantum number of either +1/2 or -1/2  
(called spin quantum  number s )

• most useful four quantum numbers for designating energy levels 
are n, /, s, and j rather than n, /, m, and s, since j indicates the 
relative orientation of the electron orbital and spin angular 
momenta.



Energy-level splitting due to the electron spin for n = 2 and / = 1 and also 
for n = 1 and / = 0



Pauli Exclusion Principle

• Pauli suggested that no two electrons could 
occupy the same state.

• This means that no two electrons could have all 
of the same quantum numbers, including the n 
and / and m quantum numbers as well as the 
spin quantum number of either +1/2 or -1/2

• This is referred to as the Pauli exclusion 
principle 



Periodic Table of Elements
• The periodic table is built up of elements (atoms) that have 

various numbers of protons, neutrons, and electrons. 

• The periodic table of the elements can be viewed as 
sequentially adding protons, neutrons, and electrons such that 
charge neutrality is satisfied.  

• In developing the periodic table of the elements, as more 
protons and electrons are added to produce new elements

• the electrons are added sequentially into shells according to 
their n, /, m, and s quantum numbers, beginning with the lowest 
allowed values and working toward higher values, with the 
maximum number of electrons determined by the number of 
protons in the nucleus. 



Periodic Table of Elements
Keeping in mind  the restrictions on quantum numbers n, /, and m. 
And also have the restrictions on s of ±1/2, and the Pauli exclusion 
principle (i.e., all four quantum numbers cannot be the same). The 
Table shows how the various elements evolve according to the way
electrons fill the possible quantum states.



Periodic table of the elements showing the s, p, d, and f subshells



Energy Levels of Multi Electron Atoms

• For the hydrogen atom, we used both the kinetic and 
potential energy of the electron in the Hamiltonian 
when determining the values of bound energy states 
or levels of the atom.

• There are a number of possible interactions that 
must be included in the Hamiltonian in order to 
obtain a more exact solution for the possible energy 
levels of atoms, especially for multi-electron atoms.



Energy Levels of Multi Electron Atoms

• Kinetic energy of the electrons - the energy associated with the electron ve-
velocities. 
• Electrostatic interaction energy of the electrons with the nucleus. For 
hydrogen, this was the coulomb potential between the proton and the electron. 
• Mutual electrostatic energy of the electrons, or the electrons being repulsed by 
each other. 
• Spin-orbit interaction - the alignment of the electron spin angular momentum 
with respect to the orbital angular momentum. 
• Spin-spin interactions of the electrons - the perturbations caused by the spin 
of one electron interacting with the spin of another electron. 
• Interaction between the orbital magnetic moments of different electrons. 
• Interactions between the electron spins and the nuclear spin. 
• Nuclear spin interaction with the orbital angular momentum of the electrons. 
Relativistic effects. 
• An "exchange correlation" that tends to align electronic spins parallel to 

each 
other. 



Energy Levels of Multi Electron Atoms

The technique that has been the most 
successful in determining energy levels when 
such interactions are considered is referred to 
as Russell-Saunders or LS coupling. For some 
atoms, mainly heavier atoms (4th point), the 
spin-orbit energy dominates; that condition is 
referred to as j-j coupling.



LS Coupling



LS Coupling



j-j Coupling



Molecular Orbital's

• What is an orbital?
– a wave function for a single particle

Molecular orbital's are composed of wave 
functions of the electrons in the molecule



Basis Sets

To study molecules quantum mechanically, 
we need to construct molecular orbital's

• We use a set of atomic orbital's 
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Φ is the molecular orbital, φ is an atomic orbital and 

a is a coefficient



• The set of N atomic orbital's and their 
coefficients compose a molecular orbital

• This approach is referred to as the 
Linear Combination of Atomic Orbitals (LCAO)

Basis Sets

The greater the value of N the more complete our
molecule will be described quantum chemically.



The H2 Model

• Each hydrogen atom has a 1s orbital
• Molecular orbitals (MOs) are formed as 

the atomic orbitals approach each other 
(remember LCAO)
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• The 1s orbitals are centred on the atoms
• If we use these two orbitals, they comprise 

a minimal basis set

The H2 Model
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The Born-Oppenheimer 
Approximation

• Central to quantum chemisty
• The approximation is based on nuclei 

being much heavier than electrons
• One considers electrons in a molecule to 

be moving in a field of fixed nuclei
• Necessary since Schrödinger equation 

cannot be solved exactly for molecular 
systems



The H2 Model

• Total Hamiltonian:

• After applying the Born-Oppenheimer 
approximation:
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THANK YOU




