

2018-16

Winter College on Optics in Environmental Science

2 - 18 February 2009

Multi-spectral Imaging: Overview and do-it-yourself experiments

> Brydegaard M. Lund Institute of Technology Sweden

Multi-spectral Imaging: Overview and do-it-yourself experiments

Abdus Salam International Center for Theoretical Physics, 2009

Mikkel Brydegaard Division of Atomic Physics Lund University, Sweden

Spectroscopy for quality control

Which banana is the most tasty?

Spectroscopy for object identification

Lime, Orange and Lemon. Which is which?

Spatial signatures and spectral signatures

What to do with spectroscopy?

M. Brydegaard, AJP, 2009

Light environment and evolution of senses

- Black body radiation
- Planck's law of radiation

$$I(\nu) = \frac{2h\nu^3}{c^2} \frac{1}{e^{\frac{h\nu}{kT}} - 1}$$

- Differentiation leads to Wien's displacement law $\lambda_{\rm matrix} = \frac{\hbar}{T}$
- The sun and black body radiation
- The solar radiation peaks around 550nm

http://www.csr.utexas.edu/projects/rs/hrs/pics/irradiance.gif

Light environment and evolution of senses

- Evolution of the human eye
- Other species
- Co evolution
- Contribution I_w to a color channel w given the emission spectra E(λ) and the sensibility spectra for the colour channel S_w(λ)

$$I_{w} = \int_{0}^{\infty} S_{w}(\lambda) * E(\lambda) d\lambda$$

Spectral world perception

Spectral bands:

Human looking at cow

Cow looking at cow

BW observation of cow

Bird looking at cow

source: Ohristopherson (2000) Geosystems

Comparison of spectral bands of various imaging systems

- Spectral content is discretized by a number spectral bands.
- Bands can vary in center position, shape and width
- Paradigm can be applied to all spectroscopic methods, including laser spectroscopy
- Contribution to a band is the integral of the product of sensitivity, reflectance and illumination spectrum.

$$U_{channel(k)} = \int_{0}^{\infty} E_{(\lambda)} R_{(\lambda)} S_{k(\lambda)} d\lambda$$

Examples of what the human eye cannot see, IR

J. Sandsten, Opt. Expr. 2004

NASA

Examples of what the human eye cannot see, IR

AIRS July 2008 CO, (ppmv) Global concentration of CO₂ measured in the IR!

Mineral mapping from satellite covering 430nm-3µm wavelength

http://airs.jpl.nasa.gov/ http://m3.jpl.nasa.gov/

N

Examples of what the human eye cannot see, micro waves

Gabon at visible wavelength

L, C & X band SIR/SAR radar images of Wade Sea. M. Gade et Al.

Gabon at radar wavelength

Fig. 10. Sediment classification provided by the Schleswig Holstein Wadden Sea National Park Office. The color coding denotes the percentage of micro particles (i.e., particles with diameters less than 63 μ m).

Examples of what the human eye cannot see, UV

Visible Appearance

Spurious/false color

Recorded by digital camera through 18A UV filter

UV, Changing appearance in the visible

Invisible UV markings on Tenerife lizards

waves

Examples of what the human eye can not see, gamma ray

Positron Emission Tomography (PET) for drug tracing

Backscatter X-ray in use in Amsterdam airport

http://en.wikipedia.org/wiki/Backscatter_X-ray http://en.wikipedia.org/wiki/Positron_emission_tomography

Examples of what the human eye cannot see in medicine

Thermography

Photosensitizers

RGB Pill cameras

Examples of spatial scales

Nerve pulses observed with Ca++ fluorescence imaging

Environmental monitoring of the Mediterranean sea

Fluorescent mouse organs, Hillman Et al. 2008

NIR image of Messier 101 spiral galaxy

Trieste

Examples of temporal scales

Fluorescent mouse organs, Hillman Et. al.

http://en.wikipedia.org/wiki/Interferometric synthetic aperture radar

Indirect photosensitizers and bio-markers

Fluorescence spectra depending on the pH

Trained honey bee

J. Shaw, Opt. Expr. 2005

pH distribution in cells

Bee concentration and landmine distribution

The ultimate multi spectral imaging conditions

- All super heroes uses
 multispectral imaging
- Infinitive spatial resolution
- Complete spatial dimension coverage, 3D
- Infinitive spectral resolution
- Infinitive temporal resolution
- Complete spectral region coverage

Measuring with light

The Light Emitting Diode, 255nm-7µm

Detectors and dynamic range

- Light intensity
 measurements
- Light descretized by photons and bits
- Upper and lower limits
- Noise and uncertainty

Intensity histograms, spanning the dynamics.

Figure 20 (a) Original image of Saharan city from an airplane (b) its histogram

Figure 21 (a) Image subjected to histogram equalisation and (b) its histogram.

Absorbing volume

Fluorescence

Fluorescence spectra

Reflecting surface

Specular

Scattering volume

Probability of scattering:

Back-scattered light

Green's functions: G($\mu_{abs(\lambda)}, \mu_{sca(\lambda)}, g$)

Simplified spectroscopy

Reflection spectrum

Sources of spectral data

Sources of spectral data
Assessment of spectral properties R

Sources of spectral data

Example: Multispectral CT

Different organs are distinguished by spectral properties accessed by changing X-ray tube voltage to produce different **E**. We obtain a **1 times 3** vector containing a spectrum from each measurement

data Sources of spectral

Example: Fluorescence

The 2D EEM spectral properties **F** can be assessed with various **E** and various **S**. We obtain a **K times J** matrix containing a excitation emission surface from each measurement. Data are **rearranged** into a **1 times KJ** vector and one dimension is discarded.

Example: Fluorescence

Fluorescence properties **F** can be assessed at various bleaching times **t**, or at different sample temperature**T** to study photokinetics. Resulting light is studied at various **S**. We obtain a **K times J** matrix containing a excitation emission surface from each measurement. Data are **rearranged** into a **1 times KJ** vector and one dimension is discarded.

Sources of spectral data

Example: Scattering properties

Scattering properties can be accessed by tranmission spectras **T** from several path lengths **d**. A **K times 2** matrix

data Sources of spectral

is obtained and rearranged into a **1x2K** vector from each $U_{channel(k,d)} = \int_{0}^{\infty} E_{(\lambda)} T_{(d,\lambda)} S_{k(\lambda)} d\lambda$ measurements. 1...K **S**_{1...К} E λ λ λ d=2

Example: Time resolution

Scattering properties can be accessed by tranmission spectras T from several travel times t. A K times T matrix is obtained and rearranged into a 1xTK vector from each measurement. T

data Sources of spectral

Example: Time resolution

Scattering and fluorescence properties causing delays can be studied equally in time or frequency domain. Spectras **T** from several modulation frequencies **f are obtained**. A **K times F** matrix is obtained and rearranged into a **1xFK** vector from each measurement.

Sources of spectral data

Imaging and spectroscopy

- Imaging. Obtaining a BW picture, a 2D matrix with spatial information of the sum of all wavelength
- Spectroscopy. Obtaining a 1D vector with all wavelengths in one point.
- Multi spectral imaging.
 Obtaining a 3D matrix with spectral information in each spatial point.

Example 1: A multi spectral CT scan would have three spatial dimensions and on spectral, equals 4D

Example 2: A real-time CT scan, will have above four dimension plus a temporal, equals 5D

Discretization

Subject to	Light intensity	Light energy	Space	Time
discretization:				
Domain:	Dynamical -	Spectral -	Spatial -	Temporal -
Discretized by:	Bits	Spectral bands	Pixels / Voxels	Frames
Resolution:	Dynamic -	Spectral -	Spatial -	Temporal -
Res. limited	Signal to noise	Channel /	Point spread	Exposure time /
by:	ratio / photons	illumination	function	flash envelope
		bandwidth		103
Range:	Dynamic -	Spectral -	Field of view	Recording time

Table 1: Comparison terms associated with discretization along various domains.

Colour spaces

- Cartesian coordinates [dim1 dim2 dim3 ... dimN]
- Spheric coordinates [abs ang1 ang2 ... angN]
- Conical
- Others
 - What are the units in either of the colour spaces?

Unit-less functions

 Unitless functions cancels effects of variating illumination and shadows suposing that the illumination is "white"

- Units can be cancelled by rational functions or trigonometrical functions
- When units are cancelled brightness information is lost

Dividing colour spaces

- During the creation of a contrast function one divide the N-dim space into regions
- If irrelevant information is discharged the formulation will be easier
- Gradual functions determines to which grade a pixel is a carrot
- Example:

isCarrot=1/(1+norm([Alpha Beta]- [AlphaCarrot BetaCarrot]))

Identification in colour spaces

- 3 colour channels: →
 2 unit-less angles in a spherical colour space
- The pixels of the carrots: become locations in the color plane
- The distribution has a shape, mean-vector, and variations.
- Imagine how the distribution would look like with more color channels

Evaluation

Third-World multispectral imaging?

Examples of components pricing for multispectral imaging:

....

200.00				
٠	Multispectral satellite	100 000	000\$	
٠	PET/CT scanner	2 000	000\$	
٠	Imaging Fourier transform spectrometer	500	000\$	
٠	Commercial push broom	200	000\$	
٠	IR Focal Plane Array (FPA) imager	100	000\$	
٠	Tunable wavelength filter	50	000\$	
٠	Optical table	10	000\$	
٠	Scientific imager	5	000\$	
٠	Optical scanning stage	3	000\$	
٠	Fiber spectrometer	1	000\$	
٠	Diffraction grating		500\$	
٠	Industrial CMOS imager / Commercial RGB camera		200\$	Limit of
٠	LEGO, LabView microcontroller, steppers, encoders,	sensors	200\$	realism
٠	Interference filter		60\$	realisti
	Absorption filter		20\$	
٠	Polarization filter		10\$	
٠	Light Emitting Diode, LED		1\$	
٠	Google earth, multispectral satellite data		0\$	111

Multi spectral X-ray

- By changing the tube voltage, the "colour" of the X-rays is changed.
- Different tissues, bone, liquids and gasses have different absorptions spectres

Wien Shift Imaging

 Simulation of multispectral X-ray

 Educational exercise

M. Brydegaard 2009

Wien Shift Imaging

LED based system for imaging transmission spectroscopy

Fig. 1. Arrangement for multi-spectral transmission microscopy employing multiple LED illumination.

Fig. 2. Normalized spectral emissions of the different LED sources used in the multi-spectral microscope.

The 200\$ microscope!

Spectral domain – Hair measurements

Fig. 5. Transmission spectra of hair strands from five individuals. The symbols in the lower part indicate λ_{max} and FWHM for each spectral band.

Spatial and spectral domain

- Spatial spectral studies
- Assessment of refraction index
- Polarization phenomena

Fig. 6. Transmission cross section for a blond hair, represented in terms of one spatial and one spectral dimension.

Object identification

- Spatial stretching by land mark technique
- Information compression
- Multivariate
 modeling
- Morphological binary operations: erosion and dilation
- False color representation

Possible further development

- Synchronization and Flashing
- Improved stray light rejection
- Reflecting objective, automated focus or spatial disconsolation
- Imaging fluorescence spectroscopy
 - Emission excitation acquisition
 - Life time imaging
- Angular discrimination
 - Back scattering geometry
 - Dark field
 - Assessment of $\mu_a, \mu_{s,g}$
 - Multi spectral microscopic tomography
- Polarization studies

RGB imagers

EEM and RGB decomposition

- Unit-less processing
- Concentration of observations?
- Multidimensional histograms

EEM and RGB decomposition

- Spectra, images or photon histograms?
- CCD, pixels and bins

2D histograms

- Histograms, spectra and images
- Distribution
 decomposition

Candy counting, how many?

- Y=F(U)
- $Y = k_0 + k_1^* u_1 + \dots + k_8^* u_8$

Residuals and quality

Туре	Peaches	Green gum	Red gum	Blue tablet	Green seed	Eggs	Orange tablet
Reality	2	1	2	3	5	2	0
Estimated	1.97	1.04	1.88	2.72	5.36	2.09	0.04

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

A new representation of M

Principal Component Analysis (PCA) Singular Value Decomposition (SVD)

V, the new base spectra

SVD/PCA - Sensitivity Analogy:

We realize that what fall into the loading c_1 is in fact R seen with the sensitivity PC1. Only that this time the sensitivity is optimized for the variance in the spectral data set.

Image decomposition, Time

2D principal components

- Orthogonal planes
- U reduced representation of M
- How many of each?

Who is who?

