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INTRODUCTION

The pages have been prepared for showing some basic points relevant to the subject.
The purpose is to use transparencies, leaving a full copy to the students.
A second copy will be also with me at Trieste.
Also some mathematical details, absent in the text, can be provided by added pages for the

interested students.
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The text is divided in parts, each distinguished by a sign.
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Scattering.

When an electromagnetic wave (e m wave) propagates in an otherwise homogeneous medium the
presence of a local inhomogeneity, such as the presence of a finite obstacle or a local change of
electromagnetic properties (real or complex refractive index), part of the incident power is deducted
from the incident wave and is lost by absorption or/and is taken away by scattered field.
This effect is generally called as "scattering".

One can distinguish between : A - a linear effect, when the scattered field maintains the frequency
of the incident wave, and B - non-linear effect when there is a change of frequency.
The mathematical description is different.
We now limit ourselves to the first case A.

The case A finds itself in a variety of practical problems. We can list some examples.

1). Propagation of radiation in an atmosphere with the presence of inhomogeneities such as water or
ice particles (tropospheric clouds which present spherical (or similar shape) water droplets, ice
clouds with ice particles of different shapes : columns, plates, rosettes of regular or slightly
irreir.'.'ar shapes).

2). Propagation in biological tissues (human or animal muscles, skin, bones).

3). Industrial materials ( wood, food, tissue)

A particular, though very important case, is that of the scattering by a medium with many
suspended parti cles} for which the scattering of the incident field can be separately dealt with for
each single particles. For this it is necessary that the particles are positioned at a sufficient distances
from each other ( a commonly criterion could be that each particle is in the far field region of the
field scattered by the other particles).
We now add that it is frequent to meet the case when it is important to take into account that the
field scattered by each particle on turn acts on the other articles, and it is on turn scattered.
This '-c the effect called as Multiple Scattering for which a possible detector receives radiation
cormV.j from"single scattering" , "double scattering", third order scattering t", and so on. That is a
realistic description could to take into account as many "orders of scattering" as it is opportune.

The case of Single Scattering by a single particle is the basic one. We can start by consider this
case.



As a simple scheme we can think of a homogeneous not absorbing medium like that which is
assumed in such problems as propagation of e m radiation in the atmosphere This is a very good
approximation when one considers a very clean atmosphere.
In such a medium let us consider the simple case of an em (electromagnetic) wave (for instance
with optical wavelength) impinging on a particle whose physical-chemical properties are different
from those of the surrounding medium.

The physical effect can be schematized as:

The em field both inside and outside the particle becomes different from that of the "undisturbed"
wave.

If the undisturbed incident wave is represented by the incident field Ei , then the resulting field
outside the particle can be written as :

1) Ei + Es

where Es is generally indicated as Scattered field.

Es depends on several causes. The sum (1) is named as diffraction field, and is considered in such
problems as diffraction by apertures in screens.

Coming back to the single particle, the internal field within the particle is again different from that
which would have been in the homogeneous medium at the same position. It is generally named as
Internal Field (let us use the symbol Eint for it).

The particle will be named as Scatterer,

It is useful to define some terms.
We now consider the important cases of linear problems, that is when the scattered and internal
fields maintain the same frequency of the incident one.
We consider the case of fields oscillating with time at frequency f = co / 2 n.
The time dependence is expressed by a factor exp(- i co t). The form of a generic electric field is
therefore.

E(P,t) = E (P) exp(-i co t). where E (P,t) is a vector function of the position P .

We have to take into consideration that in many papers or textbooks a factor exp (i to t). is
considered instead of exp(-i GO t). All the formalism is then maintained with the simple change
of the sign of the imaginary unit i.
A plane TEM electromagnetic wave which is propagating in a homogeneous medium along the z
direction with 8, JJ, dielectric and magnetic constants of the medium (sO, u,0 for a medium assuming
the properties of the vacuum) can be of the form :

2a) E (P) exp(-i co t). exp (i k z) with k = co (e u.) and the corresponding magnetic field is :

2b) H = 1 / Z z X E with Z specific medium impedance • Z- (j^ / e)

The sign X indicates vector product. z : unit vector in the direction z



By the presence of a scatterer a spherical wave with electric field Es is produced in the medium
outside the scatterer. Let us consider it as a homogeneous medium.

One can derive from the general laws of electromagnetism that, at a sufficient distance r from the
scatterer Es assumes the properties of a 1 EM spherical wave diverging from the particle.

TEM (Transverse Electro Magnetic) means that the scattered field has only components
perpendicular to the radial line connecting a reference point within the particle to the point where
Es is considered.

In this case a general expression for the field propagating in the radial direction s at sufficient
distance r from the source is

3) E (P,t) - A (Fi exp(-i( to t - kr) / r.
with the vector A (P) perpendicular to the radial direction s. k = 2 n I A.

r is the distance from a reference point in the region of the scatterer (source). S unit vector in the
radial direction.

A can have any form of polarization (linear, circular etc.).

h; this case the magnetic field H is related to E by the common relationship for the TEM wave :

4)H = 1 / Z s X E with Z specific medium impedance Z = (u, / e )

The Poynting vector Vi E X H* is in the radial direction s . It represents the (average) flux
of power per unit area.

From jncw on we assume that the constants of the medium are u 0, eO (those of the vacuum).
If the scattered field is due to a finite oscillating source whose size can be represented by a linear
dimension D, the distance r at which -Jac produced field assumes the forms 3,4 is related to the
wavelength X of the field, the linear dimension D of the scatterer by the simple qualitative
relationship :

5) r » D2 / X (•)

( » generally means a factor of (say) several units.
In this case one says that the scattered field Es is in the "Far Field" ( or simply Es is the Far Field).
When the relationship 5 is not respected Es has less simple properties with respect to Eq.5.
A component of E or H along the radial direction r can appear.

The characteristics of the divergent wave (intensity and polarization ) depend on many factors :
wavelength, physical and geometric characteristics of the scatterer, direction of scattering.

(*)M. N Mischenko, L.Travis, A.Lacis. Scattering, Absorption, and Emission of light by Small
particles. Cambridge University Press. 2002, Revised Electronic Version. NASA Goddard Institute
for Space Physics. Considerations in Sect. 3.3 indicate that this condition can be considered to be
sufficient for considering independent mattering by randomly distributed scatterers., at least for
particles not much smaller than the wavelength.
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One can see that in the far field one can represent the scattering effect by a matrix relationship
between two component of the transverse incident wave , say Ex and Ey for an incident wave
propagating in the z direction, and the two components , say Esl and Es2 of the far field. For this
we choose two perpendicular directions ul and u2 (unit vectors) perpendicular to the propagation
direction of s .The matrix is named as Amplitude Matrix, or Jones Matrix.
The relationship is then :

6)

Esl

Es2

= exp( ikr ) / r

fll fl2

£22

Ex

Ey

For this form of the matrix the elements fl 1, fl2 ,f21, f22 have the dimension of length. They
depend on the direction of scattering.

One has to note that in some textbooks the matrix relationship is presented in a different, but
equivalent, form in which the elements are adimensional, due to the presence of a different
form of the factor (e.g. exp( ikr ) /kr ) )

A simple but important case (encountered for instance in the remote sensing of the atmosphere) is
that of spherical scatterers ( e.g. water droplets of rain or fog). In this case one can choose the
directions x and ulin the "plane of scattering" (that defined by the incident and scattering
directions) and y and u2 perpendicular to this plane. Then, because of this choice, the symmetry
situation simplifies the matrix. Now only the elements fl 1 and £22 of the matrix are different from
zero)
For a more general case other matrix elements are non-zero.
When the Stokes Vector formalism is used, representing power propagation and polarization of the
incident and the scattered wave, the relationship between the four elements of the Stokes vector of
the waves are again related by a matrix formalism (4X4 Mueller Matrix or Phase matrix);



Definition of the Stokes Vector and form of the Mueller (phase) matrix.

For the Stokes Vector (symbol V) one finds different definitions. They are equivalent since the
Vector is very often used for relationships between a couple of quantities, and different
normalisation of the Stokes vector elements are of no importance.

A common definition regards the Electric vector components of a TEM wave propagating in the z
direction. The Electric field complex amplitudes are generally of the form

7) Ex = |Ex| exp(-ii^) Ey = |Ey| exp (-i(|>) ( a factor exp (-i (tot - kz)) is not shown)

The four "parameters" I, Q,U ,V of the Vector can be defined as :

8) I = |Ex|2 + |Ey|2 Q = | Ex|2 -|Ey|2 U = 2 Re (Ex Ey*) V = 2 Im (Ex Ey*)

(the apex *in dicate complex v conjugate)
It can be seen that I is proportional to the modulus of the Poynting Vector, that is power per
unit area carried by the wave, (the factor 1 / 2 Z is not explicit)

Q represents the difference of power between the two electric components

Thus the Vector shows all the characteristics of the TEM wave : propagation of power and
polarization.
Another equivalent form would be with the 3rd and 4th elements as

U = 2 |Ex] |Ey| cos 5 V = 2 |Ex| |Ey| sin 8 as can be verified from the above forms.

8 is the difference of phase between Ex and Ey. (5 = <j> -\j/) :

(for instance S = 0 indicates linear polarization, 8 = TI/2, with |Ex| =|Ey| circular polarization, etc)

HOWEVER it is always opportune to check the forms of the definition of the Stokes Vector
in every book or paper under examination.

In the so-called Modified Stokes Vector VM the two first elements are

2 2
9) II = |Ex | , 12 = |Ey| ad the 3rd and 4th parameters as in the previous definition.

The forms (8) and (9) of the Stokes Vector are defined by considering a monochromatic wave with
fixed frequency.
From the form (8) one derives the simple relationship :

10) I2 = Q +U 2 + V2 which is typical for "monochromatic" totally polarized waves.
For a general case of non- monochromatic waves (with spectral extension), the relationship 10) is
not strictly valid.



For instance for "Non Polarized" waves the elements U and V are null, since the phase 5 has equal
probability for any value, and all elements are defined by a probability law.

The linear relationship between the Stokes Vectors of the scattered (index s) and the incident (index
i) waves is shown by a 4X4 Matrix (Phase matrix , or Mueller matrix) which we will indicate as M

One can easily see the relationship between the element of the Phase Matrix M and those of the
Amplitude Matrix, For instance by considering the Modified Stokes vector of position 9.
(I1,I2,U,V), and indicating the Stokes Vector of the incident wave as Vi and that of the scattered
waver in a certain direction as Vs, one has :

Vs = 1/r M Vi

an-

The elements of the M matrix depend on the directions of scattering.. Then in case of the spherical
symmetry of the scatterer the Phase Matrix can be simplified to having only 6 elements different
from zero. For this one choses the unit vectors as indicated above :
directions x and ulin the "plane of scattering" (that defined by the incident and scattering
directions) and y and u2 perpendicular to this plane
In this case the non zero elements are a l l , a22, a33, a44, a34, a43 . If the orientation of the
axes for the incident wave is different, one can reach this situation by a rotating matrix applied to
the Stokes Vector.



ELEMENTS OF THE PHASE MATRIX aim

a l l = | f l l | 2 al2 = |fl2|2 al3 = Re { fll fl2*} al4 = -Im {fll fl2*}

a21 =£21 a22 = f22 a23 - R e { f21 f22*} a24= -Im { f21 £22*}

a31=2 Re{fll £21*} a32 =2 Re{ fl2 £22*} a34 = Re{ fll £22* -fl2 £21*}

a34 = -Im{fl l f22*

a41= 2Im{£21f2i*} a42 = 2 Im { £21 f22*}

a44= Re{flif22* + fl2f21*}

The matrix has only six elements different from zero if the scatterer is spherically
symmetric and the components of the incident and scattered field are parallel or
normal to the scattering plane

Then fl2 and £21 are = 0 V
; i v

|^£&w

<K



BALANCE of POWER.
Now one can see that the scattered divergent spherical wave Es, while propagating far from the
scatterer, carries power.

This power can be obtained by considering the Far Field and integrating the flux of power from a
spherical surface containing the scatterer , using the Poynting Vector P = (1 /2Z)E s (watt / m ),
which is directed as s, normal to this surface in the Far Field.
Let us define this total scattered power as Ws.

Moreover, if the medium inside the scatterer is absorbing (non-purely dielectric), the field inside
the particle produce dissipation of power. Let us indicate this internal dissipated power as Wi.
This happens if the relative dielectric constant sr is complex : er = er +i ei. One can see that the
presence of si. is equivalent to the presence of a density of electric current J

NEXT ANNEXED PAGE 7A

It is immediate to deduct that the power carried initially by the incident wave is reduced for this
effect by an amount Wr, and

Wt = Ws + Wi

Given the Poynting vector P (W/m ) of the incident undisturbed wave , one can write a
proportionality relationship:

Ws = os P
(Watt)

Wi = o-i P

Where the factor as is indicated as Scattering Cross Section,
and ai is indicated as Absorption Cross Section.

The sum as + ai is the Total Cross Section, or Extinction Cross Section,, ae (all with
dimension of area.



APPENDIX ABSORPTION BY COMPLEX DIELECTRIC CONSTANT.

Dielectric constant of the medium e = sO ( er + i e i )

One has D = eOE + P

P density of polarization P = (e - eO)E = eO(er + i e i -1)

er , ei real and imaginary part of relative dielectric constant

One has for the current density J - i co P = - i co eO ( er + i ei -1)

wa density of absorbed power

One has

wa = 1 / 2 Re { E • J * }

= 1 / 2 eO ei E E* ei positive

The absorption cross section : ua ( wa dv / Pi

With the integral over the particle volume and Pi is the modulus of the Poynting
vector of the incident wave



Passage of the incident wave in a medium with a random suspension of scatterers.

Consider a medium where scatterers are distributed at random in space.
First let us assume that they are equal and , if non spherical, with equal orientation of their axes.
Let N the number per unit volume of these particles. Each of them presents the same extinction
cross section ere.
The Poynting vector P of the incident wave :

Pi = (1/2Z) Ei 2 so (Watt per square meter , so = unit vector in the direction of propagation)

is reduced by the passage through the medium.
If one can assume that each of these scatters or absorbs independently (They must be at sufficient
distance from each other : one can put this condition as that they are in the Far Field of each
scattering field from the others, although this condition is questionable and it can vary).
Then power per square meter of the incident wave lost per unit distance i s P N ae .

Then one can write the relationship:

dPi/dz = - P i N ere

With the consequence that there is an exponential reduction of the incident power for a path from
z = 0 to a generic z :

Pi(z) = Pi(0) exp (- N ae z). = Pi(0) exp (-ce z).

The quantity N a = ce is named as Linear Extinction Coefficient of the medium.

ce (unity of length") .

In case one has a mixture of different scatterers, each with its a ej and number Ni per unit volume
the expression for the Extinction Coefficient of the medium comes from the sum

ce = Ij aei Ni with, immediately, the extension of the above exponential relationship.



The "Phase Function".

Generally the Poynting vector of the scattered wave depends on the direction s. The scattered
power per unit solid angle Wu has a different value according to the direction. By considering as
unitary the total scattered power Ws, one can normalize the power per solid angle to the total value,
and define the phase function p(s) as .

p(s)= Wu(s)/Ws

p(s) has the dimension of solid angle to minus 1.

Obviously : the integral of p(s) over the total solid angle = 1

NOTE : Iu some texts or papers the phase function is differently defined :

p(s) = 4 7t Wu (s) / Ws and one has to check which definition is applied.

In case of a medium containing particles of the same particles ( size, shape, orientation, internal
medium) the phase function also represents power scattered per unit volume in each direction per
unit solid angle divided by the total scattered power by the unit volume.

Given a particular kind of particle ( size, physical and geometrical characteristics, orientation in
space of its shape) one can define a particular phase function.
If the particles are of different, and of different number density the overall scattering, absorption,
extinction coefficient of the medium come from averaging :

We indicate as Ni the number density (m-3) of particles of kind i.

As for the phase function the overall phase function p t (s) can be written from averaging

p t(s) = £j Ni pi(s) <jjS / SjNio"iS where the sums are over the total numbers of particles of
kind i per unit volume. That is pt (s) represents power scattered in a certain direction per unit solid
angle normalized to total power.

2j Ni <jjs is the sum of powers scattered per unit volume due to the i components of the medium.
Per each of them the extinction is expressed by the proper extinction coefficient , and the total
power scattered per unit length of the medium, comes from integrating p t (s) over the total solid
angle 4 n.

Integral over 4 71 of pt (s) d a> = 1

One can find that the definition of the phase function is simplified if one assumes an approximate
azimuthal symmetry around the direction of incidence . Thus the phase function is substituted for by
an average about the azimuth angle. This is acceptable for spherical particles and the scattering
direction near the forward direction . However, it is valid for non polarized waves for which there
is no distinction between different azimuth directions.



Some simple methods for dealing with scattering.

Rayleigh - Debye Scattering. (R.D. approximation)

The Rayleigh-Debye scattering approach (also named as Rayleigh-Gans-Debye) is considered
acceptable in the case of a small particle for which the phase of the internal E field is assumed to be
simply that of the incident undisturbed wave. Moreover it is assumed that the complex amplitude of
the incident field inside is not altered by the presence of the particle.

To accept this point the strong inequality is assumed :

1) 2 k a ( m - l ) « 1 k = 2n/K

where a is the maximum linear extension of the particle, m is the internal refractive index.

We recall the relationship (with E dielectric constant of a medium and so that of the vacuum)

div D = e E = so E + P (in some formalism instead of P one finds 4 71 P )

with P density of electric polarization (electric moment per unit volume)

2) P = (e - so) E eo dielectric constant of vacuum

Given a single element of volume d V inside the particle, then the field internal to the element is

assumed to be equal to that obtained if dV were a small spherical homogeneous dielectric particle,

isolated in a medium, on which there was the incident external undisturbed wave. That is for dV

the Rayleigh approximation is applied.

Thus, for each element the internal moment is calculated. The general properties of continuity of the

electrostatic potential and its normal derivative tangential are sufficient to obtain the internal field

and the corresponding density of electric moment.

By taking into account the phase the 5(P) that the undisturbed incident field would have in a point

P inside the particle, the internal field Eint is given as ( see : APPENDIX SPHERE-RAYLEIGH)

3) - Ei exp (i 5{P)) 3 so / (ei+ 2 EQ) EO dielectric constant of vacuum ( as already stated
we assume that the external medium has the characteristics of the vacuum)

The differential internal electric moment d m is given as :

4) d m = - Ei exp (i 5) (si - s0) 3 s0 / (si+ 2 s0) dV

10



If one considers an elementary electric moment d in one can write for the field Es in the far region,
in the s direction of scattering due to this moment:

5) d Es = - k2 / (4 7t So ) (S A (S A d m ) exp (ikr) / r A vector product

By considering the scattered field, a more complete expression for the electric field Es produced by
an oscillating electric moment d m in a homogeneous medium (EO, HO) is :

5 ' ) Es=

= - k2 I (4 n 60) (S A (s A d m) +(1 -ikr) ( ( 3 d m • s ) s - d m ) / (s0 r2) ) exp (ikr) / r

One can see that Eq.5 is the form of Eq.5' at an r distance from the elementary moment for which

5") r»X.

where the far expression for the magnetic field H is simply if \JLQ I eo

H = l / Z s A E Z = ( Hô  eo)°'5 if Ho, so are the constants of the external

medium.
In the far field (5,5" ) one has a TEM electromagnetic spherical wave.

To obtain the scattered field one has to integrate over the particle volume. There is a phase factor
which differs according to the position of the element of volume This factor has different values
for different positions inside the particle.
SEE THE FIGURE.
Generally one can refer to a "central point" O inside the particle , for which

exp (ikr) = exp(ikrO). Also the phase of the incident field are referred to the position of 0 .

Then in the integration for each position an overall phase factor has to be taken into account. Let us
consider the scattered field in the far region.
With reference to the phase of the element at the position 0, the phase pertaining to an element at
the position P is given as

exp(ik (P-O) • z) exp (- ik (P-0) * s) (incidence in the z direction)

The first phase factor is due to the different z of the element. The second factor is due to the
different path length from the element to the scattered field point in the direction s.

An integration over the total volume of the particle gives the scattered field. If the partickle is
homogeneous only the phase factor enters in the integration.

For a simplest example. Propagation of the incident field in the z direction. Polarization of Ei in
the x direction.
Considi" "'in case of a small sphere, when the scatters is so small that the phases factors can be
considered ..'<]i..ial for the whole volume .
In the iar ileld region, the scattered field iioai a n elementary moment m of linear polarization ,
small with respect to the wavelength has the expression .
SEE FIGURE



Es = - exp(ikr) / r Km / (4 n so ) sin 9 i e

Where the unit vector i 9 is directed in the plane of scattering and 9 is the scattering angle .
m is the total internal electric moment given by the product of the volume times the density of

internal moment, which is assumed to be uniform for the particle small with respect to the
wavelength.

One sees that, given a scattering plane, an elementary moment directed as x (see figure
corresponds to varying sin 9 for different directions.



If the polarization of the incident field is with Ex and Ey different from zero, let us consider the
plane y z as plane of scattering .
For a scattering direction S in this plane one sees that the factor with the trigonometric function
sin for the field due to the component Ex is sin % 12 for every direction in this plane. The factor
differs for the field due to the Ey component for different directions in this plane.

That is the polarization of the scattered field generally differs with the direction of scattering. It is
maintained if the scattering is in the z direction 0 = 0 for which 0 = 7t / 2 for both Ex and Ey.

- TT

13



AN APPLICATION:
An application of the Rayleigh method can be found in :K.Sarabandi, T &mot', 4 W t a
Scattetmg from a Cylindrical Structure at Oblique Incidence ".IEEE Trans on Geoscience and
Remote Sensing . Vol.2S,pp.879-xxx, 1990

In the internal of the small section cylinder the polarization of the medium is obtained by r the
R.D.G. approximation. Cylinders also of non circular section are dealt with.

THE DISCRETE-DYPOLE APPROXIMATION.

In a paper by C.E.Dungey, C.Bohren. "Light scattering by non-spherical particles . a refinement to
the coupled-dyeole method". J.OptSoc.A. Vol.8, pp 81-87. 1991
the so-called Discrete-dipole approximation for dealing with scattering by extended particles was
recalled and discussed.

(See also B.Draine and PJ.FIatau (J.Opt.Soc.Am. Vol.11. pp-1491-1496. 1994))

The principle of the discrete dipole method is based on the decomposition of the scatterer into small
spheres.
To each of them the internal moment is calculated as if they were isolated under the action of the
incident undisturbed field.
The summed scattered field from them in an external far field is obtained by interference taking
into account the phases due to the different positions.
This is the first order approximation.
However each sphere is in the summed first order scattered fields from the other particles. Thus one
calculates the second order scattered field that each particle produces due to this effect.
One sees that the first order field by which one sphere acts on another one is NOT the far field. One
must use a complete expression for it (the terms of the scattered field neglected for the far field
must be included).

The relations for this second factor is then expressed by a matrix connecting the field on every
particle to the fields of the other ones.

Thus the scattered secondary field from each particle can be calculated.
This is added to the first order scattered field.
The process can be repeated until one obtains some almost stable result.

Reference to Dungey' s and Bohren' s paper for a history of applications.
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THE OPTICAL THEOREM FOR NON-SPHERICAL

PARTICLES.

(from II Nuovo Cimento C )

Starting with the case of a medium containing one type of particles, the

relationship between the incident (i) and scattered (s) fields (transverse

components in the far field) via tuie amplitude scattering matrix can be written as

Es =
with: (1)

v/21 fllj

where the elements fmn depend •:->i the directions of arrival and scattering.

Given the incident field: Ei = Eo u exp (ikz), with the unit vector u = ax x - ay y

defLii^ polarization- the optical theorem for the particle extinction cross section

Ce ear- be written as;

Ce = (4TI / k) Im ( f, i jax |2 + f12 ax ay + f21 ax ay* + f22 |ay |2 ) (2)

This is the explicit form of the relationship given by text books such as in [5],

where the relative phase of incident and scattered field is not always evidenced.

In Eq.2 ax has been taken as reference for phase, and the matrix elements fmn are

t?.V;.:n in t!:•'••. fo--vard C'\action. For non-spherical particles Ce depends on the

direction of incidence.



For a medium with y suspension of identical particles with equal orientation the

linear extinction "oeiiicient of the medium is given as:

ac = N Ce, (3) with N number of particles per unit volume.

Eqs. (2) and 3 can be obtained as follows.

Let us define as x, y (x, y) axes of the reference system those along two directions

for which the 2x2 scattering matrix J has the elements fn, f12, fn, fji, which are

functions of the direction s with respect to the incident wave direction z. Let the

incident wave field Ei (unitary amplitude) have the complex components ax, ay

along the x and y axes respectively.

( | axj2 + j ay| ) = 1 . Thus polarization is defined).

Consider an elementary layer (width dz) where the scatterers are contained, and

the scattered field on an x y plane at a distance D (plane D) from the layer. In a

generic point on this plane the scattered field has also a component parallel to the z

axis. A part from this component, which is here neglected, the component dE'11 in

the D plane of the scattered field, due to a volume element dx dy dz of the layer,

is related to the components of the incident field by linear relationship



= (4)

exp(ik(p2+D2)1/2) (p2+D2)1/2 ((ax f,,' + ay fl2') x + (ax f2l' + ay f22')y) N dx dy dz

p = (x2 + y2)l/2 ,

N number of particles per unit volume. The parameters fmn' In Eq.4 are linear

coefficients, depending on positions x,y and D. They connect the field components

relative to the same x,y axes both for the incident and scattered fields. In the

forward direction they coincide with the fmn.

dE's of Eq.4 has to be added to the incident wave.



If the layer is extended laterally (actually to infinite) one can apply the principle

of stationary phase to obtain by integration the field scattered by the whole layer:

dE's = (2 i 71/ k) exp (ikD) ((axfn + ayf12) x +(axf2, + ayf22) y) N dz

(5)

where the fmn parameters are the elements of the scattering matrix J taken in the

forward direction. The total field is thus obtained as.

E = E j + dE'

The applied principle takes into account the value of the integrand at the point

where the phase is stationary, that is at p = 0. Due to the applied principle dEs is

parallel to E1.

Since the added dEs is uniform over the plane at D, it can be considered as the

field of s- plane wave travelling in the z direction and added to the

undisturbed wave.



DT5

As for power W per unit area at the distance l>, taking into account me aiixereniiai,

one has (apart from a constant factor 1/(2 Z), with Z medium specific impedance)

W = | E ' + d E s | 2 = | E j | 2 + 2 R e ( E W E s * ) (6)

By considering Eq. (5) one has the increment per unit width of the medium

(dz = 1)

d W = -(4 71 / k) N Im ( fn* | ax | 2 + f12* ax ay* + f2i*ax* ay + f22 * | ay | 2)

= (4 7i / k) N Im ( fn | ax | 2 + fn* ax* ay + f21ax ay* + f22 I ay | 2 )

(with fmn in the forward direction).

If the considered incident power is unitary, one obtains the linear extinction

coefficient, From Eq.7 one can verify that the extinction cross section Ce for

the particles in the medium is in agreement with Eqs. (2) and (3).

Ce = (4TC / k) Im ( f,, |ax |2 + f12 ax ay + f2i ax ay* + f22 |ay |2 ) (2)

And the linear extinction coefficient of the medium is:

CTC = N Ce, (3) with N number of particles per unit volume.



2. Polarization of the propagating field.

It is always possible to define two polarization states for which polarization is

maintained. In [5,6] one finds that the effect can be related to the properties of

the Mueller (4x4) matrix M pertaining to the medium: [5,6]).

These polarization states are obtained in [6 Sect. 3.8] by considering the M

matrix, and imposing that the four elements of the Stokes vector of the

propagating beam are attenuated in the same proportion. This note shows that

they can also be obtained by considering the properties of the 2X2 J matrix of the

scatterers.

One can impose that the the polarization of the scattered field in the forward

direction is equal to that of the incident field. That is the ratio of complex

amplitude components is the same as that of the incident field.

(axfi1 + ayfi2)/(axf21 + ayf22) = a x / a y

We thus obtain a second order equation for the ratio ax / ay, and the Ex and Ey

component of the incident field. By simple algebraic passages one obtains the two

modes, which, apart from constant factors to be introduced for normalization

E, = x - 2y f2 , / (f22-fn+R)

E2 = y + 2x f ,2 / (f22-fn+R)

with: R = ((f22-fn)
2 + 4 f12f2i)!/2

; and the elements fmn of the J matrix are taken

in the forward direction.

One can see that Eqs. (8a) and (8b) for the polarization modes (directly obtained

from the J matrix elements) correspond to those of [6, sect. 3.8,].



OTl
3. Poly dispersion of particles.

Since the scattered field components are taken in the strictly forward direction, the

expressions for the modes and the linear extinction coefficient of the medium are

obtained from those for the monodispersions, with the following substitutions

(i: index for the kind of particle):

gn, gi2, gib g22 in the place of fn, f,2, f21, f22 (9)

with:: gmn = EiNifmni and N; number of particles of kind i per unit

volume. The extinction coefficient becomes:

ae = 2 Ni Cei ( indexes i for particles with different particles

and orientation). The polarization modes are obtained from eqs. (8a) and (8b) by

substituting the quantities gmn in place of fmn. One can see that Eqs. (8a) and (8b)

for the polarization modes (directly obtained from the J matrix elements)

correspond to those of [6, sect. 3.8] where they were obtained by considering the

extinction matrix for Stokes vectors.

For Eq.9 it has been taken into account that in the forward direction the relative

phases contributions to scattered field from the particles are only due to the fmn

matrix elements, and not to differences in paths.
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PARTICULAR SIMPLE CASE

IN THE CASE OF A SPHERICAL (HOMOGEOUS) PARTICLE THE OPTICAL TEOREM HAS
A SIMPLE FORM.
IF THE POLARIZATION OF THE INCIDENT FIELD IS EXPRESSED BY THE VECTOR .

ax x + ay y

PROPAGATION IN THE Z DIRECTION

x y unit vectors |ax|2 + |ax|2 = 1

ONE HAS :

CE = 4P/K Im { fll |ax|2 + £22 |ay|2 }

THE EXTINCTION POWER IS THE SUM OF THOSE RELEVANT TO THE
TWO COMPONENTS OF THE INCIDENT FIELD.



Small dielectric particles and their cross section dependence on polarization deserves particular
attention For a simple* example let us consider the case of small dielectric ellipsoids. VOT small dielectric rotational
eUtpsoiQS U\e scattering properties can be obtained by the electrostatic approximation.
If the electrostatic approximation is adopted, the cross section of a dielectric particle cannot be simply obtained
from the optical theorem, since scattered radiation in the forward direction is in phase with the exciting radiation.
However, we can remember the case of a small dielectric sphere. For this particle the scattered power and the
cross section are obtained by taking into account the internal electric moment and the emitted power. On the other
hand, the Optical Theorem gives the same cross section if one considers the first imaginary term in the expansion
of scattered field in spherical wave. Then, analogously, for small dielectric ellipsoids the cross section can be
obtained by considering the electric moment M internal to the particle, and the relevant radiated power. W

Let us now consider the z-axis as the narrow beam direction.
The scattered field for such particles can be obtained by considering the internal field and the relevant components of the
electrical moments as are obtained by electrostatic method (Ref.l 1)
We now take into account the case where two groups of equal ellipsoids with different orientation are present in the
medium. For each group fig. 1 shows the considered geometry. A group has the major axis along the x axis. The
direction of the ellipsoid major axis for the second group is in the x y plane at an angle of 45degrees with the x axis.
NOTE : more details on the derivation of the J matrix elements for ellipsoids and the cross sections are given in Ref. 10,
following Refs. 11,12)

In order to calculate the linear extinction coefficient of the medium a factor equal to the number of identical particles per
unit volume (or group of particles for the case of interest) is sub-intended. For a generic orientation of the ellipsoid major
axis, the Fig. 1 indicates the geometry.
The Stokes vector is here taken in the form I, Q, U, V,

Fig. 1 The propagation direction of the incident radiation is along z. The scattering direction is along z', and is

on the plane y z (scathing plane) The vector A is along the mayor axis of the dielectric ellipsoid. It

rrw'.es fr.c angle p with the direction z. The unit vector p is alo.-ig the projection of A on the plane

perpendicular to z. p makes the angle <t> with the axis x.

For our cases 9 = 0 (forward scattering)

Here we present one case in detail. Other cases can be found in Ref. 10
The polarization modes are obtained for a couple of dielectric ellipsoids. . . ,
One ellipsoid has its major axis along the x axis and the second, of equal size and shape, has its major axis m the
with an angle of 45°with the x axis. In our cane . 9 = 0 (forward direction), $ = 0 and %/4 , p - TT/2
For a general orientation of the ellipsoid, the elements the fmn elements of the J matrix in the forward d.rect.on can be
obtained (Ref.12)as:

y plane,



The following table shows an example of ratio between scattered powers for
small dielectric ellipsoids

Ratio between the scattered powers relevant to two orthogonal linear
polarizations.
Dielectric Rotational Ellipsoid . Ratio between major axis A and minor axis B :
A/B = 4
Relative dielectric constant e r= 1.5
Propagation of the beam along the z direction
Position of the axis A:
In the x z piane, making an angle 6 with the x axis
W l = powrr scattered with linear polarization of the incident beam along the x
direction
W2 = power scattered with linear polarization of the incident beam along the y
direction

Dl =1.039 (*) D2 = 1.235 (*)

0 W1/W2

0 1.413.

it/9, 1.364

same results for 0 and n-Q
2TC/9

It/3

4*/9

ir/9

1.242

1.103

1.012

1

(*) Dl and D2 are the parameters according to the formalism for the scattering
by dielectric ellipsoids in J.Stratton. Electromagnetic Theory (Ref.7)



PRINCIPLE OF THE STATIONARY PHASE.

It is a method for dealing a single or double integral when the integrand shows an oscillatory
behaviour which becomes very rapid and tends to present a greater and greater number of
oscillations when a parameter increases.

A single integral of the type

X 6 0 -

CL

where f (x) and g (x) are regular, with a, b, k real numbers.

The situation occurs when k tends to an infinite value.
One understands that the integrand function shows oscillations more and more frequent, so that a
in a greater and greater part of the x interval the contribution to the integration is cancelled. But If
there is a zone where the phase is stationary this zone acy tually contributes to the intef gration
results. The effect can be produced when the parameter k tends to infinite.

Say that this occurs at a point xO of the integration interval.
It can be shown that the integration tends to the form :

K

Where the apex " indicates double derivation.



The principle can be extended to a double integration of the type :

a.

In this case the possibility of applying an analogous principle occurs if in the integration dominion
there is an interval of the variables about the values xO, yO where the phase is stationary.

It can be shown that the integral tends to :


