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Combustion diagnostics

C.Luijten



Combustion diagnostics

Diagnostics used for measurements 
of:

• Species concentrations

• Pressure

• Temperatures

• Velocities

• Particle characteristics (number density/size)

• Surface characteristics



Objectives with Diagnostic Techniques for 
Combustion Characterization

• Development of new diagnostic techniques as well as 
fundamental studies of these new as well as established 
techniques (e.g investigations of spectral behaviour at 30 bar, 
3000 K) 

• Applications of the more developed techniques for 
measurements of relevant parameters, e.g. species 
concentrations, temperatures, velocities and particle 
characteristics for phenomenological studies (e.g
investigations of turbulent combustion)

• Applications of mature techniques for characterisation, 
optimisation and control of industrial processes (e.g
investigations of IC engine performances)



Undisturbed pre-
mixed flame

Premixed flame
disturbed by a 
thermocouple

Why lasers in combustion 
diagnostics ?

•Non-intrusive
•High spatial resolution (<0.001 mm3)
•High temporal resolution (<10 ns) 
•High spectral resolution (~MHz)
•Multiplex (multi-species, multi-point)
•Can measure non-thermal equilibrium

Photo: P.-E. Bengtsson



Potential drawbacks with  lasers in 
combustion diagnostics ?

•Complicated

•Expensive

•Eye safety

•Optical access required

•Intrusive?
•Laser-induced breakdown

•Creation of molecular fragments; atoms

•Optical pumping



Laserdiagnostics in combustion
What can be measured ?
• Temperatures (rotational/vibrational/ 

translational/electron)

• Species concentrations (molecules, 
radicals, atoms )

• Velocities

• Particle number densities/diameters

• Surface characteristics

• Two-phase characterization



Laser
Lens

Spectrograph &
detector

Set-up incoherent scattering



Incoherent measurements



Laser  techniques

Incoherent techniques:

• Mie/Rayleigh scattering 

• Laser-induced fluorescence (LIF)

• Laser-induced incandescence (LII)

• Raman scattering



Set-up coherent scattering



Coherent measurement



Laser  techniques

Coherent techniques:

• CARS

• Polarisation spectroscopy

• DFWM

• Stimulated emission, SE



Short history: Combustion Laser 
Diagnostics

• First papers on combustion applications in 
the early seventies; Raman/Rayleigh
applications

• First Engine /GT applications during the 
eighties; LIF developments

• Multidimensional visualization, non-linear
techniques during the ninties

• Multiple technique applications, quantitative
real-world applications during 2000-



Practical applications of laser 
diagnostics: Special challenges

• High pressure
• Limited optical access
• Sooty environment

– Laser-induced break-down
– Laser-induced incandescence
– Mie scattering

• Practical fuels
– Extinction, trapping
– Laser-induced background fluorescence

(e.g. from large HC)
– Photolytic effects, e.g. laser-induced C2 emission

• Window scattering/damages/fouling



LIF: Measures e.g, NO, OH, 
CH, CN, C2, O2, CH2O, fuel-tracer

General features:
- High sensitivity
- 2D imaging capabilities
- Spontaneous technique
- Measures temp. and  konc.
- Quantification problem

Laser-induced fluorescence



Cylindrical lens

2D-detector

Lens

FlameLaser beam

Two-dimensional measurements



Courtesy. Z-S. Li et al.



Turbulent jet flame

Vi = 105 m/s (air)

Exposure time = 2 μs

14000 frames/s

CH LIF

Courtesy. Z-S. Li et al.



CH/OH

The experimental setup for simultaneous PLIF of OH and CH in turbulent 
premixed jet methane/air flames



Simultaneously CH/OH 
visualization (jet flame)

Courtesy: Z-S. Li et al.



LIF visualization
a) Engine environments



Engine types

Intake          Compression        

inlet
valve

exhaust
valve

SI-engine

GDI-
engine

HCCI-
engine

air + fuel

Intake               Fuel injection            Ignition              Combustion

air

air + fuel



Engine optical access

Window to
the Piston

Quartz
Liner

Pentroof
Window

Mirror

Lightsheet
Positions

Camera

spark plug
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Piston



Twelve fuel/air calibrated 
single shot registrations in 
an engine using 2D LIF 
with 3-pentanone seeded 
to iso-octane. This shows 
the cyclic variations in the 
engine. 

Fuel visualization



Direct Injection Stratified 
Charge (DISI) Engine



In-situ engine measurements with  limited optical 
access

• A standard Karl Stortz
endoscope was inserted in the 
sparkplug hole.

• The endoscope was coupled to 
an image intensified CCD 
camera by a single 25 mm 
positive lens.

Endoscopic LIF Detection 
System for in-situ DISI 
engine visualization



CFD
Computational Fluid Dynamics

LIF

Fuel visualization through endoscope:
Comparison between LIF and CFD
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Simultaneous detection of 
formaldehyde and OH

• Formaldehyde
Excitation at 355nm
Detection: >400nm

• OH
Excitation at 283nm
Detection at 308 nm

Delay between the 
two lasers: 500ns
(0.004 CAD @ 1200 rpm)



Experimental setup



Digitalized dataDigitalized data

Formaldehyde and OH
distributions in a DI HCCI engine 

Formaldehyde
OH



High speed LIF system
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Turbulent non-premixed
CH4/air flame, Re=5500

Air
CH4CH4



Fuel Tracer PLIF in an SI-engine
(single-cycle-resolved )

7 ATDC 7.75 ATDC 8.5 ATDC 9.25 ATDC 10 ATDC 10.75 ATDC 11.5 ATDC 12,25 ATDC

• Fuel: iso-octane
• Tracer: 6% 3-pentanone
• Fuel: iso-octane
• Tracer: 6% 3-pentanone

13 juni



Fuel Tracer PLIF in a DISI-engine
(single-cycle-resolved )

50 50 s between exposuress between exposures

55 BTDC 54 BTDC 45 BTDC 44 BTDC 35 BTDC 34 BTDC 25 BTDC 24 BTDC

• SOI 64 CAD BTDC



OH PLIF in a SI engine
(resolved single-cycle)

Δt = 100 μs



Cycle-resolved formaldehyde 
visualization in a HCCI engine

Time-separation 0.5 CAD
45 mJ/pulse at 355 nm
Intensifier gate time 50 ns
λ= 4.5

Rate of heat release

Formaldehyde formationFormaldehyde formation



3-D fuel tracer PLIF
• Information on “flame” topology
• Rapid slicing of the measurement volume
• 3D data reconstructed from the eight 

resulting 2D-measurements
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3-D fuel tracer PLIF in an engine

Sheet spacing: 0.5 mm

+6 CAD

Iso-concentration surface

Isolated fuel islands



Laser-induced excitation 
spectra of NO; 

a) 300K, b) flame temp.

Temperature
measurements
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Principle 2D temperature imaging: 

TLAF



YAG 1

YAG 2
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Experimental set-up: TLAF



Single shot T-distributions in an engine
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LIF visualization
a) Gasturbine environments



Experimental 
set-up at 

ABB-STAL

ABB double cone burner



Four single-shot PLIF images of 
air/fuel inhomogenieties



”Swirling” 
burners at VAC



Experimental set-up



Average OH 

images at different 

spatial locations

from the burners





Experimental arrangements for Jet-A studies



LIF spectra from JET-A at different T



Experimental set-up: 
simultaneous Mie

scattering/LIF



LIF species visualization
c) Furnace/Biomass environments



Pyrolysis experiments I
Excitation at 266 nm



Pyrolysis experiments II 
Excitation with 355 nm
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2D LIF imaging of pyrolysis
products from wood particles



LIF experiments in a laboratory
wood-particle fuelled burner



LIF spectra: exc 282 nm

Fuel: propane

Fuel: biopowder



Furnace applications - LIF


