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“Perhaps the fundamental equation that describes the swirling 
nebulae and the condensing, revolving, and exploding stars is 
just a simple equation for the hydrodynamic behavior of 
nearly pure hydrogen gas”.-- Richard Feynman Lectures on 
Physics

NASA Hubble: 
M16  “Eagle             
Nebula”

For some, the universe can be seen as a fluid system….

Emerging from the eroding tips of 
giant pillars of hydrogen and helium 
(roughly 9 trillion kilometers tall) in the 
Eagle Nebula are dense globules of 
gas as wide as our entire solar 
system. New stars are forming from 
gas condensing within these stellar 
cocoons. The columns generally are 
believed to evolve from a fluid 
instability related to Rayleigh-Taylor 
flow.



Consideration of fluid instabilities ( again Rayleigh Taylor instability) was needed  
explain the first detailed observations of a supernova explosion: 1987a.

From Science and Technology Review (2000)

Simulation of Rayleigh Taylor instability when a 
dense fluid is initially placed on top of a lighter 
one. Here the dense fluid falls in spikes and the 
ligher fluid rises in “bubbles” to take its place. 



The first scientific investigations of fluid turbulence are generally 
attributed to Leonardo Da Vinci.

Turbulence is widespread, indeed almost the rule, in the flow of
fluids. It is a complex phenomenon,  for which the development 
of a satisfactory theoretical framework has been one of the 
greatest unsolved challenges of classical physics.



Many interacting (temporal and spatial) degrees of freedom
Non‐equilibrium and nonlinear

Turbulence is exemplified by seemingly random motions of 
fluid, where it appears impossible to describe the motion in all
details as a function of both time and position. However, it can 
be precisely characterized statistically, with reproducible 
average values of certain quantities. 

Fluid turbulence is characterized by:

Turbulence is a feature of the flow of fluid, not of the fluid itself.   



Turbulence exists in a wide range of contexts such as the motion of submarines, 
ships and aircraft, pollutant dispersion in the earth's atmosphere and oceans, heat 
and mass transport in engineering applications as well as geophysics and 
astrophysics [See, e.g., D.J. Tritton, Physical Fluid Dynamics. Clarendon Press, 
Oxford (1988)]. 

The problem is also a paradigm for strongly nonlinear systems, distinguished by 
strong fluctuations and strong coupling among a large number of degrees of 
freedom.  [G. Falkovich, K.R. Sreenivasan, Phys. Today 59, 43 (2006)]. 



However, the complexity of the underlying equations has precluded much analytical 
progress, and the demands of computing power are such that routine simulations of 
large turbulent flows has not yet been possible  [See: National Research Council Report: 
Condensed Matter and Materials Physics: Basic Research for Tomorrow's Technology, 
308 pages, National Academy Press (1999)].

Thus, the progress in the field has depended more on experimental input. This 
experimental input in turn points in part to a search for optimal test fluids, and the 
development and utilization of novel instrumentation. That has lead to the work at ICTP’s
turbulence laboratory at Elettra which utilizes low temperature helium as a test fluid

Turbulence  is particularly useful because the equations of motion are presumed to be 
known and can be simulated with precision. And so, even distant areas such as fracture
[M.P. Marder, Condensed Matter Physics. Wiley, New York (2000)]--- perhaps even 
market fluctuations [B.B. Mandelbrot, Scientific American 280, 50 (1999)]---may benefit 
from a better understanding of it.



If this lecture were to be given a high school in the state of Kansas 
we would stop here….

CNN Headline Monday November 7, 2005:

“Kansas school board redefines science”

“Intelligent design holds that the universe is so complex that it must have 
been created by a higher power.”



Basic Fluid Equations

The equations of mass, momentum and energy conservation are 
written down in a coordinate system that is fixed in space (“Eulerian”
description).

Considering a fluid of density ρ, moving at a velocity u, mass 
conservation takes the form:
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Assuming constant density (note: we will assume this even in the
case where there is thermal expansion due to heating) this reduces to 
the divergence-less condition:

0=⋅∇ u
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For a Newtonian fluid, in which the stress and strain tensors are linearly 
related, the momentum equation reduces to

in terms of the pressure p and kinematic viscosity ν=μ/ρ, where μ is the dynamic 
or shear viscosity. For convenience of notation, we have used the so-called 
substantive or convective derivative:

The body force term is represented by Fext which could arise from sources such 
as gravity, rotation and magnetic field. Of particular interest is gravitational 
buoyancy in thermally driven flows, for which there is only one component in the 
direction of gravity and is given by Fext = gαΔT where g is the acceleration of 
gravity, α is the isobaric coefficient of thermal expansion and  ΔT is the 
temperature difference across a layer of fluid in the direction of gravity. 
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where κ=kf / ρCP is the thermal diffusivity of the fluid with thermal conductivity kf
and specific heat CP.

The equation for energy conservation in the Boussinesq approximation [A. 
Oberbeck, Annalen der Physik und Chemie 7, 271 (1879)] is
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These three equations above describe the fluid motion and determine the 
velocity, pressure and temperature.

They must, of course, be supplemented by the appropriate initial conditions 
and boundary conditions on rigid or``free" surfaces, conducting or insulating 
surfaces, rough or smooth surfaces, etc. as appropriate. 

Under these conditions, the solutions of the equations of motion should 
indeed correspond to the observed flows, including turbulence (it is of 
course impossible to ever specify the initial conditions sufficiently to predict 
detailed trajectories in the space of the variables). It is not always clear if 
small deviations from the ideal boundary conditions produce only small 
effects. 



Flow past a circular cylinder. (a) Re = 26 (LAMINAR). (b) Re = 2000 (TURBULENT).  
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Let us simplify our consideration to  isothermal flows. 



The Reynolds number is a manifestation of dynamical similarity. That is, if we consider 
two simple flows that are geometrically similar, then they are dynamically  identical if the 
corresponding Re is the same for both, regardless of the specific velocities, lengths and 
fluid viscosities involved. 

Above left: wake behind a small flat plate inclined 45 degrees to the direction of the flow 
(left to right) in the laboratory.  Above right: A foundered ship in the sea happens to be 
inclined 45 degrees to the direction of the current.

Matching such parameters between laboratory testing of a model and the actual 
full-scale object (the prototype) is the principle upon which aerodynamic model-
testing is based. 



The molecular time scale for momentum diffusion is (dimensionally):

ν

2

~ LtM

A characteristic time scale for turbulent flows can be estimated from 
the largest scale flows, of characteristic length L and velocity u, which 
are the most effective at mixing (again dimensionally):

uLtT /~
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ν
uL

t
t

T

M

Re of a turbulent flow then can be interpreted as the ratio of a characteristic 
molecular time scale to a turbulent time scale  in the case that the former is 
evaluated over the same length scale. 

Some dimensional considerations
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It is tempting, but not necessarily useful  to think in terms of an effective 
“eddy” viscosity or diffusivity K so that there is a simple diffusion time for 
our effective “fluid”

Setting this turbulent diffusion time equal to the actual turbulent scale we 
have (for diffusion of heat)

Re~ =≅
ννκ
uLKK

So that  Re also appears as a ratio of this turbulent diffusion to molecular diffusion 

(Valid for gases)



Approximating  homogeneous turbulence in the laboratory by placing a large array 
of crossed “cylinders in a  grid pattern in the flow.

steady flow

grid

Initial turbulent forcing at 
scale of the mesh size M.

turbulent flow

Eddies produced by flow (e.g., 
through a grid at length scale 
M= mesh size)

Cascade of energy in inertial range 
(local transfer of energy due to 
nonlinear inertial term in NS eqn.).

Viscous dissipation at small 
scales for which local Re~1.



where k is the wavenumber and E(k) dk is the kinetic energy in the wavenumber
shell between k and k+dk and ε is the energy dissipation rate per unit mass.  The 
proportionality constant C is empirically determined to be about 1.5.

The energy spectrum is derived (Kolmogorov) from dimensional arguments and has 
the form

E(k)=Cε2/3k−5/3

The rate of energy dissipation per unit mass, ε, is the same as the rate of energy input.

Reducing viscosity simply allows the cascade to continue to even smaller scales 
until the characteristic Reynolds number of the smallest eddies becomes of the 
order unity, or when the eddy turnover time is equal to its characteristic diffusion 
time. The result for the dissipation length or “inner” length scale is: 

:  characteristic Reynolds number of the large (integral or “outer”) scale l



(a) “Low” Re. (b) “High” Re

A turbulent jet

( ) 4/13
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“inner scales” of length, 
time, and  velocity:

Note that 1v =ν
η

η / l  ~ (ul/ν)‐3/4 =   Re‐3/4

τ/tΤ ∼ (ul/ν)−1/2 =Re‐1/2

v/u ~ (ul/ν)‐1/4 = Re‐1/4

Scale relations

The difference between two flows with the same integral scale but different 
Re is the size of the smallest eddies.  Index of refraction gradients are 
steep for the smallest eddies and hence shimmering seen on hot days.



Given that the analytical approach is difficult due to the nonlinearity of 
the NS equations, what about direct numerical simulations (DNS) in 
which the appropriate equations are solved on a computer without
making any approximation?
As we just saw, the range of scales needing to be well resolved, l/η, 
grows as Re3/4. If the flow is to be followed in a numerical simulation 
with a uniform grid, the minimum number of necessary grid points
(in three dimensions) is then proportional to Re9/4, thus hampering 
DNS efforts.

Under certain circumstances, large eddy simulations (which compute 
only the large scales but model the small scales) and turbulence
models (which compute only average information) do better in terms 
of providing useful information, but they are not satisfactory as 
universal recipes. The state of the art in computer hardware is years 
away from allowing us to address the most important problems in 
natural and engineering fluid turbulence. 



So experiments are really needed. But you could ask this question:  why not 
use nature’s “laboratories”, such as the atmosphere and oceans, which we 
know can be instrumented and  studied for turbulence dynamics? This is 
certainly less costly and perhaps more relevant to the actual situations that 
we may be interested in. 

Of course, this is done, but is not a substitute for controlled laboratory 
studies when questions become sharp and a deeper understanding is 
required. 
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Rayleigh number:

The majority of large-scale turbulent flows in nature have buoyancy as 
their major driving force from atmospheric and oceanic flows to turbulent 
motion in stars

Rayleigh-Benard Convection (RBC)
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Ra ~1022

10-3<Pr<10-10

Ra ~ 106

Pr~1021

(Pr~103,magma)

Sun

Mantle

Some of the motivating examples of thermal convection at 
limiting values of the control parameters in nature

Atmosphere  Ra~1017 Pr~0.7



(from L. Kadanoff, Physics Today, August 2001)

Cartoon of turbulent convection

Solar plumes (simulation, U. chicago)

Atmospheric plumes (Leonardo Da Vinci)



Convection Cell
(Cryogenic Helium Gas)

Multilayer
 Insulation

Bottom Plate
(Fixed Heat Flux)

Top Plate
(Fixed Temperature)
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The ICTP apparatus for turbulent convection studies

Elettra Synchrotron Laboratory

12 orders of magnitude variation of Ra!
Plus: ultra high Ra (>1017)



Log-log plot of the Nusselt number versus Rayleigh number

J.J. Niemela, L. Skrbek, K.R. Sreenivasan & R.J. Donnelly, Nature, 404, 837 (2000)
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Turbulent transfer of heat energy

J.J. Niemela & K.R. Sreenivasan, J. Fluid Mech., 557 411-422 (2006).

Conductivity enhancement by 20,000!

Nu= dimensionless measure of heat transfer
(= ratio of turbulent to molecular thermal conductivity)



Right:  a proposed 
convection cell capable of  
Ra~1021

20 m high (outside), 7m 
diameter

Refrigeration needed
< 200 W  

Huge accelerator facilities 
like CERN or BNL would 
have plenty of liquid 
helium on hand, used to 
cool superconducting 
magnets.

Proposals to use large cryogenic facilities….

RHIC, BNL
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A mean wind and its reversals

Glatzmaier, Coe, Hongre and Roberts Nature 401, p. 885-890, 1999

Geomagnetic polarity reversals:  range of time scales~ 103‐105 years.



Lifetimes of solar flares depend on convective motions

Reuven Ramaty High Energy Solar Spectroscopic Imager  (RHESSI)

Bershadskii, Niemela
and Sreenivasan (2004)

PDFs of duration times for (left) the maintenance of one direction of the wind in confined thermal 
convection and (right) medium energy solar flares.  



Quantum fluid

Classical fluids

vn, ρn
vs, ρs
η = ηn

Feynmann (PLTP, 1955) envisioned turbulence as a tangle of such quantized vortices
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Below Tλ: two fluid model

Superfluid turbulence

A solution in cyl. coordinates of the NLSE for an ideal Bose gas Ψ0 = f(r)eiφ describes a 
quantized vortex, where f(r) represents the superfluid density varying from zero as r goes to 
zero to a constant value at vortex core radius of approximately one Angstrom (see Koplik and 
Levine, PRL 1993). 

44 m
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m
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4msv

irrotational (curl vs=0)!

circulation:



Turbulent tangles of quantized vortices

The simulated tangle of quantized vortices on 
the left corresponds to 1.6 K, while that on the 
right is at 0 K. After Tsubota, et al (2000). 

For a random tangle of vortex lines there is only one length scale, the average inter-
vortex line spacing

Turbulent flows in the Kolmogov sense must mimic eddies on all scales through 
partial polarization of vortex bundles.



Superfluid “washing machine” (Maurer and Tabeling 1998)

(a)Helium I
(b)Helium II ρn ~ ρs
(c) Helium II  ρs/ρ ∼1

Strong evidence of classical energy cascade

Counter-rotating disks 



He II

Grid flow in a superfluid: quasi-classical turbulence
Dissertations: M.R. Smith, S.R. Stalp
Stalp et al (PRL, 2000; Phys. Fluids, 2002)
Skrbek, et al (PRL, 2001); 
Niemela, et al (JLTP, 2005)

Measure decay of L = length of vortex line per unit volume

Pocket-size! 1-cm square channel

T=1.3K

2/3
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2/3)3()( −⋅
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= tdCtL
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Classical decay law



Optical Dewar

Nd:YAG Laser

Nd:YAG Laser

Dye Laser

Camera

Better arrangement using dedicated optical cryostat:

Cryogenic PIV (particle image velocimetry) experiment (shown here at Yale University)



a

b

c
1 mm

Visualizing quantized vortices
Dissertation: Bewley
Bewley, et al (Nature 2006)
Paoletti, et al (PRL 2008)

JJN: “Reconnecting to superfluid turbulence”
http://physics.aps.org/articles/v1/26



• Illuminate with pulsed i/r laser at 
910 nm (modest power).  

• Immediately after,  illuminate with 
pulsed i/r laser at 1040 nm.

• Observe decay of d3Σ+
u to b3Πg

with emission at 640 nm (lifetime 25 
ns). 

• The b3Πg returns to a3 Σ+
u by 

non-radiative processes (may 
need to be accelerated by optical 
means)

• Process recycles.
• → ~ 4x107 photons/s at 640 nm. 

Future work:  Laser induced fluorescence of helium 
molecules (created  by electron bombardment)

From Dan McKinsey, Yale U.



Shadowgraphy/Schlieren methods for thermal flows:

Shadowgraphy
(from Woodcraft et al)

From Lucas group, Manchester near 
convective onset in liquid.

Integrates along optical path

Refractive index n and density ρ are related through the Clausius-Mossotti relation:
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Visibility depends on (n-1) αΔΤ−−−even though n ~1 for both gas and liquid, α can 
be rather large especially near the critical point.

M=molecular weight, γ = polarizability



phonons

Classical Richardson cascade on 
scales greater than vortex line 
spacing.

Kelvin wave cascade on scales 
less than .

energy flow 

Phonons

energy flow

Where does the turbulent energy go at T=0 where there is no viscosity?

T>0 T=0

Reconnections are 
need to bridge the gap

“Plucked”
vortex cores 
emit sound 
(phonons)


