

The Abdus Salam International Centre for Theoretical Physics

2018-29

Winter College on Optics in Environmental Science

2 - 18 February 2009

Atmospheric Monitoring, Differential Optical Absorption Spectroscopy – DOAS II, Applications

> Platt U. University of Heidelberg Germany

Atmospheric Monitoring, Differential Optical Absorption Spectroscopy – DOAS II, Applications

Ulrich Platt

Institute for Environmental Physics, University of Heidelberg

- Sample Applications Active DOAS
- Cavity Enhanced DOAS
- Examples Passive DOAS
- Summary

WINTER COLLEGE ON OPTICS IN ENVIRONMENTAL SCIENCE 2 – 13 February 2009, Triste, Italy

Sample Applications of DOAS ...

0

km

3

2

1

5

Multi - Reflection Cell (White System)

Multi-Reflection-Cell DOAS Measurements of Aromatic Compounds

In the Kiesberg road traffic tunnel (Wuppertal, Germany) Feb. 28 - March 8, 1998;

Kurtenbach et al. 2002

Intercomparisons DOAS - Other Techniques

Active DOAS – NO_2 (Open Path Multi – Reflection System) vs. NO_2 – Measurements by Photolytic Converter + Chemoluminescence (BERLIOZ 1998)

Alicke et al., J. Geophys. Res. 108, D4, 8247, doi: 10.1029/2001JD000579, 2003

Active DOAS - CH_2O (Long Path) vs. TDLS (aircraft)

Wert et al. J. Geophys. Res. 108, D3, 4104, doi:10.1029/2002JD002502, 2003

Cavity Ring-Down Spectroscopy (CRDS), Cavity Enhanced Absorption Spectroscopy (CEAS)

The idea: Use high finess optical cavity to provide long light path (kilometres) in a small volume)

CRDS: Determine monochromatic absorbance by ringdown time

CEAS: Determine absorption using DOAS technology

Heidelberg CD-DOAS Instrument

Spatially Resolved Measurements Why and How?

Option	Advantages	Problem(s)
Many (10 ³ – 10 ⁵) instruments	true in-situ measurements	Technology must be developed (cheap mini x-meter?)
LIDAR	proven spatial resolution for some species	Combination of spatial resolution and sufficient sensitivity problematic Expensive solution
Spectroscopy	High sensitivity Relatively cheap solution (depending on technique)	Daytime only (passive techniques) Limited spatial resolution

Tomographic Measurement Geometry in Heidelberg

Universität Heidelberg

D. Pöhler, I. Pundt K.U. Mettendorf

The Principle of Tomography

Reconstruct 2D image from series of 1D projections (i.e. of column densities)

FIGURE 25-15

CT views. Computed tomography acquires a set of views and then reconstructs the corresponding image. Each sample in a view is equal to the sum of the image values along the ray that points to that sample. In this example, the image is a small pillbox surrounded by zeros. While only three views are shown here, a typical CT scan uses hundreds of views at slightly different angles.

FIGURE 25-16

Backprojection. Backprojection reconstructs an image by taking each view and *smearing* it along the path it was originally acquired. The resulting image is a blurry version of the correct image.

NO₂ and SO₂ Sources in Heidelberg

D. Pöhler, I. Pundt K.U. Mettendorf

2D-Reconstructions in Heidelberg, Sept. 20, 2006; 3h Averages

2D Reconstructions: Feb. 8 – Feb. 9, 2006; 3 hour Averages

1 unit = $5 \cdot 10^{11}$ Molecules / cm³ \approx 19 ppbv

2D Reconstructions: Feb. 8 – Feb. 9, 2006; 30 min. Averages

movie

1 unit = $5 \cdot 10^{11}$ Molecules / cm³ \approx 19 ppbv

Time Series (3 hour avg.) of Tomographic DOAS Measurements of NO_2 and SO_2 in Heidelberg, 2006 D. Pöhler, I. Pundt K.U. Mettendorf

Modern Design of an Active DOAS Instrument

Different Light Sources for DOAS

Light Emitting Diodes as Active DOAS Light Sources

Muli-LED Set-up for simultaneous measurement of CIO, OCIO, BrO, SO₂, O₃

Institut für Umweltphysik

Airborne Multi AXis DOAS (AMAX-DOAS)

- 1) DLR Falcon: SCIAMACHY Validation, 10 viewing angles, 2 spectrometers (UV, vis.)
- 2) Lufthansa Airbus A340-600, CARIBIC experiment 3 viewing angles, 3 spectrometers (UV), 2004 - 2014

Vertical profile measurements during ascent and descent

Measurement of stratospheric, free tropospheric and total tropospheric column at cruise altitude

Institut für Umweltphysik

AMAX-DOAS Measurement of the NO₂ Distribution Bruns et al. ACP, 2005

Falcon (DLR)

Total of 4 Observation directions:

0° (nadir) 88° forward, slightly up 92°,forward, slightly down, 180° zenith

AMAX-DOAS Measurement of the NO₂ Distribution Feb. 19, 2003, Basel, Switzerland – Tozeur, Tunesia

2D – Tomography with AMAX - DOAS

Tomographic AMAX-DOAS Measurement of Trace-Gas Distributions

Tomographic AMAX-DOAS Measurement of NO₂ Distributions at Sermide Power Plant (Milano, Italy) 26. Sept. 2003

3) (Passive) Imaging Spectroscopy

- Scanning: Whiskbroom ↔
 (one pixel at a time)
- 2) Pushbroom techniques (column of pixels at once)

3) Full 2D Techniques (whole image at once):

- Imaging Fourier-Transformation Spectroscopy
- Gas Correlation

Aircraft-Based Imaging DOAS

Determine 2D distributions of trace gas (e.g. NO_2 , SO_2 , CH_2O) column densities along "stripes" (≈ 10 km width) along the flight track.

Aircraft-Based Imaging DOAS

Airborne Imaging-DOAS, Instrumental Setup

Rockwell 690A Aircommander operated by the South African Weather Service

(ZS-JRA)

Klaus-Peter Heue et al. 2007

- Acton 300i spectrograph (f = 300mm), Andor CCD detector (1024 x 512 pixel)
- Mirror entrance optics (f_1 =-51.5mm and f_2 =25.6mm) total focal length f_{tot} =13.7mm
- 29° field of view theoretically; 24.5° in reality due to obstructions

Flights in the Highveld area: SA, three in October 2006,Klaus-PeterSeven in August 2007 - data analysis is in progressHeue et al.4400m above ground, 1900m swath width, 70m x 75m resolution2007

Airborne I-DOAS Measurements at Majuba Power Station (SA), 4500 m Above Ground, Oct. 5, 2006

- NO₂ dSCD close to Majuba powerplant
- Swath width 1.9 km length 6.6 km
- Resolution
 70m x 75m

Klaus-Peter Heue et al. 2007

S.P. Broccardo, S.J. Piketh, K.E. Ross and U. Platt, ACP, 2007

Airborne I-DOAS Measurements at Majuba Power Station (SA) Oct. 5, 2006 Comparison to a SCIAMACHY Ground-Pixel

SCIAMACHY single geound pixel, October 4[,] 2006

Klaus-Peter Heue et al. 2007

Secunda (SASOL) Power Station (SA), 4500 m above ground

Total distance 11.9km Swath width 1.9 km 27 pixels, each 70 m wide

K.-P. Heue, T. Wagner, S.P. Broccardo, S.J. Piketh, K.E. Ross and U. Platt, in prep., 2007

Secunda (SASOL) NO₂and O₄

New Instrument for HALO (High Altitude LOng Range Aircraft: 3D – Measurements by combination of Push-Broom and Tomographic Measurements

Ground-Based Imaging DOAS (I-DOAS), the Principle

- Simultaneous recording of spectra in a column of the image (100 - 500 pixels)
- Scanning of the entire image by rotating mirror (100 500 columns)
- DOAS-evaluation of Spectra yields column density for each pixel

Universität Heidelberg

Imaging DOAS (I-DOAS), Instrumental Setup

Size: ca. 50 x 50 x 20 cm³ plus PC

Lohberger et al., Applied Optics 2004

Imaging DOAS Towards the "Trace Gas Goggle"

0

1

NO₂ in the Plume of University of Heidelberg Heating Plant, 450 m Distance

N. Bobrowski, I. Louban, 2005

SO₂ in the Plume of Etna, Oct. 2003

3

5

4

2

Lohberger et al., Applied Optics 2004 Universität Heidelberg

k

BrO Chemistry in Volcanic Plumes

Imaging DOAS Cross-Sections of the Etna-Plume, May 10, 2005

BrO/SO₂ ratio spatial distribution over the plume cross section as measued by Imaging DOAS (Louban et al. 2009)

→Supports the idea of BrO – formation by mixing-in of O_3 (and HO₂) from the edge of the plume.

2) Multi-Axis DOAS (MAX-DOAS) for Quantification of Plumes

Example: Plume height Determination by Scanning MAX-DOAS

SO₂ from Soufriere Hills Volcano on Montserrat, Caribean, May 25, 2002, Bobrowski et al. 2002

MAX - DOAS BrO from Soufriere Hills Volcano on Montserrat, Caribean, May 25, 2002

BrO/SO₂ in Different Volcanic Plumes

Variation of the BrO/SO₂ Ratio with Distance from the Source

Universität Heidelberg

Bobrowski et al. 2006

Application: NOVAC Network for Observation of Volcanic and Atmospheric Change Coordinator: Bo Galle, Gothenburg

2) Static Multi-Spectrometer DOAS System

Setup of a static multispectrometer DOAS system for plume observation.

Present status:

>40 instruments at 16 volcanoes (Europe, Central America, Reunion)

letwork for

Nolcanic

Ossama Ibrahim, Torsten Stein 8 November 2005

Plume Monitoring from Mobile Instruments

Determine plume height with dual spectrometer system:

Plume Scans and Traverses at Mt. Etna, Italy, July 16, 2008

Sichthöhe 31.53 km

Vertical Profiles with Balloon - Borne Reflectors

Mini - MAX-DOAS Instrument at the Salar de Uyuni (Bolivia), Nov. 2002 (N. Bobrowski, G. Hönninger)

Salar de Uyuni (Bolivia), Oct./Nov. 2002 (N. Bobrowski, G. Hönninger)

Photon Path Length Distribution (PDF) Inferred from High Resolution Oxygen A-Band Spectrometry

Idea: Reverse DOAS

Usually: Unknown Concentration - Known Pathlength

Here: Known Concentration - Unknown Pathlength

The Solar photon path length (distribution) in the atmosphere is inferred from DOAS measurements of an atmospheric absorber of known conc. (O_2, O_4, O_3)

The Oxygen A-Band $({}^{1}\Sigma_{g}^{+} \leftarrow {}^{3}\Sigma_{g}^{-})$

Clear and Cloudy Sky Measurement of the O₂ A-Band

The Cloud Cover and Inferred Photon Path Distr. Fu. (Sept. 17, 2001, UT 9:45 - 10:45)

Cloud structure (backscattering ratio measured by the 95 GHz GKSS Radar) on Sept. 17, 2001, UT 9:45 - 10:45. Inferred PDF assuming a Γ -type PDF distribution. The inferred PDF moments are given in units of vertical atmospheres

Specia thanks to: Steffen Beirle Nicole Bobrowski (not on foto) Klaus-Peter Heue (not on foto) Ilia Louban (not on foto) Christoph Kern Dennis Pöhler Roman Sinreich Thomas Wagner (not on foto)

Summary

- Spatially resolved DOAS techniques are rapidly developing.
- In particular new technologies like I-DOAS and ToTaL-DOAS will allow spatially resolved measurements at relatively little effort.
- Advances in technology like LED-DOAS will make active Tomographic DOAS – measurements possible.
- While retaining the traditional advantages of DOAS:
 - inherent calibration
 - simplicity
 - real time capability
 - non contact measurements

Further Information ...

U. Platt, University of Heidelberg, Germany J. Stutz, University of California, USA

Differential Optical Absorption Spectroscopy

Principles and Applications

2008. XV, 597 p. 272 illus., 29 in color. (Physics of Earth and Space Environments) Hardcover **129,95 €, \$179.00, SFr. 226.50, £100.00** ISBN 978-3-540-21193-8

Also:

http://troposat.iup.uniheidelberg.de/index.html

Universität Heidelberg

