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SCATTERING by PARTICLES of SIMPLE SHAPES.  MIE THEORY

One can deal with this Lind of problem by decomposing the e m; field in ¢lementary solutions of
Maxwell equations. That is in particular solutions suitable for the shapes of the scatterers.

For instance. One considers spherical waves for spherical scatterers, eylindrical waves for
cylinders.

The case of the sphere is dealt with by the “ Mie Theory” : the incoming plane wave, the scattered
field outside the sphere, and the internal field are represented by series of elementary solutions.

By applying the continuity of tangential elec.ric and magnetic fields at the sphere surface the
amplitudes of this elementary solutions are found .

In principle other shapes can be dealt with. However the cases of spheres and cylinders are the most
usually found.

(An extznsion of the Mie Theory to particle different has been introduced by the so called Extended
Boundry Condition method). :

1. Principles and formalisms of the Mie theory.
For the sake of simplicity, without loosing generality, the constants for the external medium are

£0, WO, while those of the internal medium are €, HO.
The propagation constants are correspondingly : k0 = o (go, p.Lo)o'5 . k=o(s, uo)o'5 s

The elementary forms of spherical waves are found by applying the theory of Debye Potentials.
Spherical co-ordinates r, 8,4 , with cenire r = 0 at the sphere centre.
A sczlar funcier. f(r, 0,0 ) obeying the equation :
1 A+ K f=0
with AzLaplacian in spherical co-ordinates, is the starting point.

One then considers two vectors M (r, 6,0 )and N (1, 0,6 ) :

M(,0,0 y=curl (f(r,0.6 )rs) with 8§ unit vector in the radial direction

It can b showr that M pbeys tha equation

AM 0.6 )+IEM@E0,0) = 0 (details available)
Then one considers the vector N :

N{@ro0,0)=1k culM N obeys the same equation as M :

A'N(R, 8,0 )+FK'NR,0,6) =0
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Onchas ; cul N =k M curl M ==k N k=2xn/A

One sees that the M and N vectors are in an equivalent relations like the E and H fields.

Then, with opportune constant factors, they can represent electric and magnetic vectors in regions
without sources.

Since M=A X r (A gradient X vector product), one can see that M has no radial component (

along the radial direction 8), while N has a non zero radial component,

Then : if M is used for representing Electric fields one has Transverse Electric waves, with
non-transverse Magnetic field which presents.radial components.

While if N is used for representing Electric fields one has non transverse Electric waves presenting
radial components, and Transverse Magnetic waves.

Thus ,with opportune factors, a general Electric field is a sum of both M and N independent
.- vector solutions, with the coiresponding magnetic field.

Combunations of the two (independent) positions represent general solutions of the system of
differential equations of second order.

Every particular case under examination determines the particular coefficients for the expansion
of the field in terms of the elementary vectors (eigenvectors and eigenvalues).

For the fields one can put

@

H=-i0eM E=kN magnetic transverse case
And

E=i10p0M H=kN eleciric transverse case

The two positions are linearly independent. A linear combination of the two gives the general
solution for the field (in a region with no source).
The fields obey the basic equations

curlH =-ioe E and culE =iopy H

From the relationship

M=curl (f(r,0,¢) r) (r =r s)
M = (1/sin6) 6f/8¢ 10 -8 £/301i¢
i@ and i¢ unitvectors iv¢ r X i6 X vector product



The expressions for the M, N vectors.

They can be derived from the solutions of the equation for the scalar function f(r, 0, ¢ ) :
2 2

AT, 0. )+K {09 ) =0

This equation can be dealt with by the common method of setting f (r, 6,6 ) as the product of a
function of 1, a function of 6, and a function of ¢. One obtains elementary solutions of the type :

(2)
fon (5 6,0 ) = (/(2Kk1) * Z pay (k) Pron (cos B) cos (m¢)  or

(n/(2kr)) s ne1z (Kt) Py (cos O)sin O §)

where (n/2kr) * Z yp (ki) s indicated as © spherical Bessel function”.
Figures on the m next page

InEq.2 n=0,1,2.......... m integer lower or not greater than n

And Z n4yp (kr) ( Bessel functions of fractional order )

Pnn (cos ) associate Legendre functions of first kind of degree n and order m
See annexed page 11

From the scalar functions (2) one obtains the expressions for the M and N vectors,
then the forms of the fields by derivations.

The incident field and the internal field must not have singularity at the origin (

the centre of the sphere).
Thus for these fields the Z .4 (kr) function must be the Bessel function of
fractional order of first kind. That is the functions J .1 (kr). (J capital letter)

The function (n /(2 k 1)) 2] ne1n (kv) is generally indicated as

I, (ko) (J non capital letter )

The scattered field must obey the general property that at great distance ( in the Far
Field) it behaves as a transverse radial spherical wave, with amplitude factor 1/r.

M 4
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Figure 4.2 Spherical Bessel functions of the first («) and second-¢(b) kind.



That is the Z 4+12 function must be of the Bessel function of third kind, which at
great distance from the origin behaves as :

Hon = @/inxdPexp((kr—n (n+1)/2))
(See the factor (/2 kr) % in Eq.2)

The spherical function (m /2 kr) %z n+172 (kr)" if one chooses the Bessel function of
third kind is generally indicated as

h, (kr) (hnon capital letter)

For completeness : one has two independent functions for the spherical
Bessel function of third kind.

Their symbols are (a)

L . . . e
H,+ 1’/2 whose behaviour at great distance from the origin tends to

Q/nxr)Pexp(kr—n m+1)/2))

and (b)

1) ' . .
H .+1» whose behaviour at great distance from the origin tends to

Q/nkr)?exp(-i(kr—n (n+1)/2))
The form (a) is used to represent a spherical wave diverging from the
origin if the factor exp (- i » t) is used for the time factor.

The form (b) is used to represent a spherical wave diverging from the
origin if the factor exp (i ® t ) is used for the time factor .

An apev. (1) should be employed in the h,(kr) functions ov the previous
pages. . |

M 3
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(4.19)

'(4.20j

0¥ where the r-component of N, has been simplified by using the fact that P
satisfies (4.4). Any solution to the field equations can now be expanded in an

infinite series of the functions (4.17)-(4.20). Thus, armed with vector harmon-
ics, we are ready to attack the problem of scattering by an arbitrary sphere.
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Suitable linear combinations of the elementary solutions for the outer field ( sum of
incident and scattered fields) , and the elementary ones for internal field give the

formal solutions.

A constraint which determines the solution is added : the external field must present
tangential components (summed of incident and scattered fields) equal to the one of
the internal field : both for the magnetic and the electric field.

Now one can consider the incident field. It can be expanded in series of the
elementary functions. Details are shown in the ANNEX EXPANSION . From this it
can be seen that the only acceptable value for m is

m=1.
After the expansion there results a series of linear equations, each separately for
each n, whose solutions give the constant factors in the series expansions of the
incident, internal and scattered field.
The separation is due to the orthogonality properties of the Mnm and Nmn vectors.

The index n is made to assume values from 1 to a “sufficient” number.

From now on we assume that the sphere is homogeneous, although the Mie
formalizin can be extended for spherically stratified spheres.

Due to the spherical symmetry of the problem one can start by considering an
incident wave with linear electric polarization along the co-ordinate x.{ Case X) The
results can be directly extended to other kind of polarization of the incident wave.
For instance if the incident E field is linearly polarized along the y axis, the
scattered field Es can be obtained by the relationship.

Es ( ¢, polarization x) = Es (¢ + n / 2, polarization y)

which means that when the incident E field is polarized as y (Case Y) the scattered
Es field can be obtained from the expressions for the case X by changing

b to ¢+m/2.

It is obvious that in the forward direction ( 0 = O)the scattered field is the same for
the two case “ a” and “b” .

At this point one can always reduce the problem to consider the scattering plane X,
that is the plane defined by the incidence direction and the scattering direction.

Let us define as direction z that of the incident wave propagation.

Then one calls Eix the incident field component in this plane, and as Eiy the
comrponent perpendicular to this plane.



Let us consider the scattered field in the far field region.

It is easy to deduce by symmetry that the scattered field component in the scattering
plane X the scattered field component (field Esl) is only due to Eix, while the
scattered field component perpendicular to X ( field Es2) is only due to Eiy,

If one starts with a different orientation of the x y axis one can always use a rotation
matrix to come at the situation above.

The linearity of the equations implies that the two components of the incident fields
are related to the two components of the scattered field by linear relationships.

For the simpler situation the Amplitude Matrix has only diagonal elements

Els f11 o | Eix

exp(ikr) /r

E2s 0 £22 Eiy

In order to maintain the diagonal characteristics of the matrix, one understands that
the consideration of a different reference plane needs that one refers the incident
field to different couples of axes. For this it is needed to apply a rotation matrix to
the .incident field .



As already explained tthe scattered field in the Far Field region, as well as the
internal field can be obtained by solving the groups of 4 equations connecting the
tangential electric and magnetic components of the incident , scattered, and internal

fields.
Without loss of generality we can limit us to consider then case (X) and the case (Y)

separately.

We here skip details which are given in Bohren and Huffman book. The results are
shown :

For the case (X) The scattered field in the far region is along the i0 unit vector. One
has

Es = » 5 overn between | and infinite

2 n En /(ike) ( (i 2y E'n Tn - by &g 7)) 1o (w(0) , mm(6))
ig unit vector in the scattering plane in the direction of increasing the scattering angle.

En (k) = kr h,,l(kr) apex ’ = derivative with respect to the argument

En = (2n+l){n(n+1))Ei

Case (Y) : one has for the scattered field

Es = > , overnbetween 1 and infinite

2on En/(ike) (12, &n ma+ by En 1a)) i g (ta (m®/2) , mm(mw/2))
En = (2nt+tl)(n(n+1))Ei
7, = P',(cos 0 )/sin O 7, = d/d8 P (cosh)

Now we assume that the magnetic permeability of the medium and sphere is the
same, while the relative dielectric permittivity of the particle is m time the
permittivity of the medium. (m can be complex if the particle shows conductivity)

M



By also putting

WYn (kr) =k rjukr) one has :
an =
= ( m Wy (I’I’l X) W’ n (X) = Ynq (X) W, n (X)) ) / (m Yn (rnx) };’n(x) - % n(x) W’ n (mx) )
bn=
=(yn(mx) Yy (x) -my, (X)W a(x)))/ (Yo (mx) &a(x)}—m & n(x) Y, (mx) )
Where the parameter x is

x=2mallA ( a radius of the sphere), and the apex ‘ in an and bn indicates

derivative with respect of the argument.

The functions v, and £, are the Riccati Bessel functions :

Yn(P)= P JulP)

: ) by
i) = (20 Lun(p)
Edp)= phyap)
™ i
hia(p) = (n/2p) 7" HiPialp)

with apex (1) in the forms h; ,(p) and H; ,.1»(p)



Legendre Functions. P™,( cos 6 ) Equation :

(I-x*)d*/dx* P"(x)-2d/dx P"(x) +(n (n+1) -m/(1-x))P"(x)= 0

Xx=c¢0s0.

Whenm=0 P",( cos0) is simply written as P,{ cos 0).

P.(x) =(lUm 2"d"/dx" ((x*- 1"

P (x)= (i)™ d"Pn/ dx™

Po(cosB) =1 Pi(cos®) = cosO
P,(cosB) = 3/2 cos’® -1/2 P3(cos®) = 5/2 cos’ 6—3/2cosO
P!i(cosB) = sinH P, (cos0) =3 sin O cos O

P%(cos8) = 3 sin’ 0



Extension of the Mie scheme to non spherical particles.

A thorough description of the so called “T Matrix” method or “Extended Boundary Conditions™
method can be found in :

M. N Mischenko, L.Travis, A.Lacis. Scattering, Absorption, and Emission of light by Small
particles. Cambridge University Press. 2002, Revised Electronic Version. NASA Goddard Institute
for Space Physics.

The non-sphericity of the scatterer does not make it possible to connect each n element in the
expansions of the incident wave in terms of Vector Spherical Waves with the corresponding n
element of the scattered field.

However, by considering a minimum radius of a sphere around the scatterer a matrix can be
obtained connecting by linear relationships each n element of the scattered expansion to all the
elements of the incident wave ( a finite sum is reasonably stopped)

This is justified since inside the scattered one can determine a maximum sphere, at the surface of
which one considers the expansion of the internal field, Then the fields internal to the sphere are
connected to the fields in the space between the scatterer’ surface and the external sphere by linear
relationships of continuity. The same happens at the surface of the external sphere between field
arriving from inside and total field at the external surface, which is the sum of the incident and
scattered wave.

Details of the method are exposed in the quoted book,Part II, Sect.S.

Theory :

P.C.Waterman. a :Ma'rix formulation for electromagnetic scattering. Proc. IEEE 53. 805-839.1971.
b: Symmetry unitarity and geometry in electromagnetic scattering. Phys. Rev.D3 825-812. 1971.

For an application : WJ:Wiscombe, A.Mugnai. Single scatteing from non-spherical Chebyshev
Particles. B NASA Ref. Publ1157 : GSFC Greenbelt. Md. 1986

ML



ExC4

ANNEX EXPANSION.

Expansion of the incident and scattered field in Vector Spherical Harmonies.
Determination of the coefficients,

In practical problems of scattering by spherical particles the wave impinging on the spheres

generally has the local characteristics of a plane wave. The radius of curvature of the a wave front is
much greater than the scatterer’s diameter.

(The same situation is taken into account in many practical problems of scattering by non-spherical
particles).

Thus one has a plane wave as a start point.

It can be shown that a plane ¢ m wave can be represented as a sum of spherical wave.
This is shown in text books (e.g. C: Bolren, D:Huffman. Absorption and scattering by small
particles. Wiley 1983 Sect. 4.2).

Briefly: Due to the linearity to the problem, one can assume a linear polarization along the x
direction

Ei=Fiexp(ikz)x, with the corresponding magnetic tield
Hi = 1/Z zXEi. Z = (p0/¢0)"  External medium : vacuum
( X - vector product, propagation in the z direction)

In the quoted book on the basis of orthogonality of the spherical wave components, it is shown how
to expand the incident field in series of elementary spherical waves.

Quoted book, Sect.4.2 ; Expansion of a plane wave in vector spherical harmonics,

In the next page we copy the expressions for the vector components obtained from the formalism
explained on the previous pages :

In this page :

P =K.

Z, (1) irsdicates the spherical Bessel functions, which is of the first kind for incident and internal
field, and of third kind for scattered field. . ‘

As explained with this choice the incident and internal field have no singularity at the sphere‘ centre,
while the scattered ficld behaves as a spherical wave with 1/ r dependence on r in the Far Field.

The incident field is then written as (the sums to infinite)

Ei= T, Zem (BemnMemn + Bomn Momn + Aemn Nemn + Aomn Nemn).

A comparison with the table of the spherical functions between the expression of the'incident field
shows that in the exnrassion of Bi only the terms with m = 1 are present. Also the parity shown by
Ei i.:~icates that Moln and Neln are present. Thus one has SEE NEXT PAGES

Ei= Z,-:{( Bomn Momn + Aemn Nemn )
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BX Py

The constants Bomnand  Aemn have 1o be defined by comparison with the incident field
expression. An exampie is shown in APPENDIX to EXPANSION.

Then one obtains

Boln =i" Ei 2n+1) /(n (n+1))

Aeln= -iEi i" 2n+1) /(n (n+1))

Then: Ei= Ei Z,i" 2n+1)/(n (n+1)) ( Moin -i Neln) the sum I, from n =1 to infinite

With k of the esternal medium and the spherical Besselfunctions of the first kind.
By the relationship between electric and magnetic field., one has for the incident Magnetic Field

Hi = (-k/op0)Ei Z,(i"@2n+1)/(n(n+1)) (Memn +]1 Nemn).

The sum extended from n =1 to infinite.

One has taken to take account that vector harmonics with different m are mutually orthogonal.,
because of the dependence on sin (m ¢) or cos (m ¢)



Exe ©

An analogous expansion is made for the internal field and the scattering fold.
Spherical Bessel functions of the first kind are present in the expansion of the incident and internal
medium and Spherical Bessel functions of the third kind are present for the scattered field.

The coefficients are then determined by imposing continuity conditions at the surface of the sphere.
For the orthogonality properties of the spherical vectors four equations are separately valid for

each n. These conditions regard the components along the unit vectors i ¢ and ig, for the Electric
and the Magnetic vectors. Thus for each index n one has 4 equations connecting the couples of
coefficients of the scattered and internal fields.

By indicating the scattered field as Es

One obtains
Es= Z,-y En (-bnMoln + tan Neln ). om ‘b‘m
And by the relationship between Hs and Es i_., o FAC equn ey

Hs = (k/oul) Z4-1(an Meln +ibn Noln).
With En= (@("@(n+ 1)/ (n(n+1))Ei

And with the spherical Bessel function of third kind

From the table of the Vector Spherical Harmonics one observes that the term in €, ( radial unit
vector) of Nemn is going to zero at great distance from the origin. That is the scattered E field
becomes Transversal.

This can be seen since the term €, has a factor that tendsto 1/ (kr )2 exp(ikr +o) ,while in the

other components of Nemn a factor 1 /r prevails with distance. . o
The scattered field assumes the behaviour of a spherical TEM wave diverging from the origin ( the

centre of the sphere).
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Scs4
CROSS SECTIONS. PHASE FUNCTION. PHASE (MUELLER) MATRIX

In the case of the sphere the formalism to obtain the extinction cross section and the scattering cross
sections is particularly simple. Let us have an e m wave propagating in the z direction, with electric
field components Ex and Ey.
Let W be the power per unit area.
W is the sum of the powers relevant to the two polarization components :

W=Wx+ Wy.

The ¢ross section for each polarization is the same. Scattered power is the sum of powers scattered
by each of them.

Therefore let us assume linear polarization Incident electric vector along the x direction. (unit

vector i )
From the general Optical Theorem one has : _

¥) Oe= (drn/kK)Im{f.i } (. dot product)

where fis defined from the relation : Es=Eiexp(ikr)/r f. f scattering amplitude.
In Eq. (*) f is taken in the forward direction in the

In the directicn z the angle ¢ = 0, the angle 8 is 0. The unit vector i 6 is. x .

In the forward direction one has :

an /0 =n{n+l) /2 m{0)=n(n+l) /2

Then .

Es = x X Eiiexp(ikr)/ (kr) (2n + 1) /2 (an + bn) Then the extinction x cross section is :

e = (2n/ kz) Z.(2n+1) Re {an+bn} where the sum over nn is from 1 to infinite.

Ifthe sphere is not absorbing the scattering cross section Os is equal to the extinction cross section
Ce.
However, a different expression can be obtained for G if there is absorption.

os can oe cale:lated - consitering the scattered power and the integration of the power flux
thouyh a spherical surface of large radius around he sr.ere.



Ges 2

One obtains =
os = (n/K)E, 2@n+D) (Janf +[bn/)
A common representation of Ge  is given by the ratio Q
Q = ce /ma’

with a radius of the sphere. That is the ratio between Ge and the geometrical cross section of the
sphere.

A typical representation is shown by the figure. It refers to a sphere of water, at different

wavelength, as a function of the ratio R =a/ (27 A). The behaviour of Q is typical : at smail
values of R (the so called “Rayleigh “ zone) there is a rapid increment of Q. Then there is an
intermediate zone (the so called Mie zone) where there is an oscillating behaviour. Then Q tends
toward a value Q= 2. This last zone is in agreement with the so called “Optical paradox™ , by
which the cross section tends to doubling the geometrical g cross section.

However the paradox is only apparent. A simple scheme assuming a geometrical “stop” of “rays”
arriving at the at the “obstacle” does not take into account the diffraction of the wave at the line of
the particle border.

The Phase function.

The scattered power per unit solid angle in a certain direction is different if incident polarization
is in the scattering plane or normal to this plane. '

However, one can average power scattered in all the azimuthal direction, and there is no
dependence on polarization. With this average one can consider a “phase function” defined as the
powes scattered per unit solid angle in a certain direction making at angle © with the incident
direction. divided by the total scattered power.

That is the phase function provides the scattered power per unit solid angle, averaged over the
azimuthal direction. (There would be a certain difference if one considers scattered power per unit
solid angle at different incident polarization with respect to the scattering plane).

If one needs to take into account this difference one should refer to the a scattering matrix (the

Mueller matrix). tvnebiow

The Figures show several cases of phase matx, as a function of the scattering angle, for different
values of the ratio a/{ One sees that when this ratio increases the phase function becomes more and
more peaked in the forward direction. This effect is of the same type as that of the diffraction by an

aperture in a screen).

(**) It is needed to take into account that some books and papers define the phase function by
a differens normalization. The meaning is not changed. There is the only change by a
constant factor)

As already explained the Phase matrix (Mueller matrix) has a simpler form in the case of a sphere
and when the reference axes for the incident wave are : one in the scattering plane and one normal

to the plane.
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Figure 4.6 Extinction efficiencies for water droplets in air; plotting increment = 0.01 pm™ L
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Figure 103 Dielectric functions of water (Hale and Querry, 1973). ¢” for ice is taken partly from
Irvine and Pollack (1968) and partly from an unpublished compilation of the optical constants of
ice, from far ultraviolet to radio wavelengths, by Stephen Warren (to be submitied to Applied
Optics). '
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Fig. 20—Haze-type distribution functions used. The units for the radius r
and for the unit volume in n(t) depend on the particular model (see Table 5).
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Fig. 21—Cloud-type distribution functions. The scale for the radius r is linear
here, rather than logarithmic as in Fig. 20,



