

2018-23

Winter College on Optics in Environmental Science

2 - 18 February 2009

Adaptive Optics: Introduction, and Wavefront Correction

Love G. University of Durham U.K.

Adaptive Optics: Wavefront Sensing

Gordon D. Love Durham University, UK

William Herschel Telescope with GLAS Rayleigh Laser Guide Star

Photo: Tibor Agocs, Isaac Newton Group of Telescopes

Atmospheric Seeing

ICSTM, 1995, Betelgeuse, 30ms exposures, 689nm \wedge urham University

Seeing Simulation: Wavefronts

(Courtesy of Georgia State University www.chara.gsu.edu/Resources/gallery.html)

Seeing Simulation: Effect on Image

Wavefront Sensing I Overview

- Shack Hartmann WFS
- Curvature Sensing
- Interferometry
- Phase Retrieval Methods
- Image Quality Metrics
- Modal WFS
- Pyramid WFS
- Hybrid Curv. & Grad. WFS

Used relatively infrequently

Most commonly used techniques

Newer techniques

Why is wavefront sensing not simple?

Classic Problem in Physics called the Inverse Problem

- Given a particular intensity distribution, in the focal plane, what was the distribution of phase, and intensity, in the pupil plane which caused it?

For a point source

$$I(x, y) \sim \left| \Im[A(u, v)e^{i\phi(u, v)}] \right|^2$$

Where \Im means Fourier Transform. Given I(x,y) it is impossible to unambiguously determine $\phi(u,v)$.

Shack Hartmann WFS

Shack Hartmann WFS Displacement Measurements

- A Shack Hartmann WFS measures the local wavefront slope, or gradient. The data consists of a series of x and y slope measurements for each lenslet.
- If a wavefront is tilted by an angle θ , then the image moves by a distance

Shack Hartmann WFS Example spot displacement patterns

Defocus

Astigmatism

Curvature Sensors Basic Principle

University

Curvature Sensors Measurements

- Curvature sensing involves recording the intensity of the beam in 2 planes on either side of the focus.
- The difference in intensities is proportional to the wavefront curvature $\nabla^2 \phi(u,v)$

Curvature Sensors Transport of Intensity Equation

The transport of intensity equation governs how the field propagates from one plane to another. For a wave described by

Curvature Sensors Measurements

$$\frac{I_1(\underline{r}) - I_2(\underline{r})}{I_1(\underline{r}) + I_2(\underline{r})} = \frac{f(f-l)}{l} \left[\frac{\partial W}{\partial n} \delta_c - \nabla^2 W \right]$$

Roddier, Appl. Opt. 27(7):1223 (1988)

 δ_c a unit impulse function around the edge of the pupil

I.e. curvature sensing involves solving Laplace's equation with the Neumann boundary conditions.

f = focal length and / = displacement of planes from the focus

Interferometry Basic Concept

Distorted Wavefront

Interferometry

It is difficult to produce a flat reference wavefront (at least for measuring atmospheric turbulence), so interferometers that have been used in AO have had to generate their own reference wavefront.

- Shearing Interferometer
- Smartt Interferometer
- For non-atmospheric turbulence AO, then one could use a conventional Michelson, or similar, interferometer.

Interferometry: Shearing Interferometry

- No reference arm is (usually) available, hence use shearing interferometer.
- E.g. lateral shearing interferometer

Maui Space Surveillance System

Phase Retrieval: The Gerchberg-Saxton Algorithm

- The Gerchberg-Saxton Algorithm is an iterative computational technique used to determine the phase distortion that produced a particular PSF (Image of a point source).
- It uses knowledge of ...
 - The intensity distribution in the image plane (PSF)
 - The intensity distribution in the aperture (or pupil) plane (usually a top-hat function).

R. Gerchberg & W. Saxton. Optik, 34, 275 (1971)

Phase Retrieval: The Gerchberg-Saxton Algorithm

Image Quality Metrics

- 1. Record distorted image
- 2. Measure "quality" of the image (called image metric).
- 3. Adjust wavefront corrector
- 4. Re-measure the image quality to determine whether it has improved.
- 5. Iterate

Pros: No optics Cons: Slow

Example metrics.... $M = \int Mask(u).I(u)du$ $M = \int I^{2}(u)du$

Wavefront Sensors Summary

- Shack Hartmann wavefront sensing
 - wavefront gradient determination by measuring displacements of sub-images from a lens array
- Curvature Sensing
 - wavefront Laplacian determination by measuring changes in the beam intensity as it propagates
- Interferometry
 - wavefront (gradient) determination by interfering the wavefront to be tested with a reference wavefront
- Phase retrieval:
 - wavefront determination from the actual image data.
- Image Quality Metric Assessment
 - optimisation method using image data

Wavefront Sensors II

Detectors & Technology

Gordon D. Love

Overview

- Fundamental Requirements of a WFS
- Fundamental Limitations on WFSing
- Detectors for WFSing
- Commercially available WFSs
- Comparison of different WFS types
- Practical issues of dividing the light between the WFS and WFC

Fundamental Requirements of a WFS

- 1. The WFS must be able to measure the wavefront to sufficiently high quality (typically $\lambda/10$)
- 2. The WFS must be able to operate on faint objects.
- 3. The WFS must, in general, be able to work with broadband sources.
- 4. It is desirable for the WFS to operate using extended sources.

Wavefront Sensing Fundamental Limitations

- For astronomy, the wavefront sensor camera needs to be...
 - high sensitivity
 - high frame rate
 - low noise
- For non-astronomical applications, the criterion can sometimes be relaxed, because of the relatively large amount of light available. This is not always the case, however, e.g. ophthalmic imaging.

Shack Hartmann WFS Signal/noise calculations

Shack Hartmann WFS Signal/noise calculations

Should the WFS always be used in closed loop? In general, yes.

- The spots are stationary when the loop is closed
- Therefore WFS only needs a restricted dynamic range.
- Reduces number of pixels needed, and therefore can improve signal/noise.

Electronic offsets are sometime used to account for static aberrations in the optics. If this is so, care must be taken if using a quad-cell arrangement, since the spots may not be centrally placed on the array.

Conclusions

- Wavefront sensing is a critical part of an adaptive optics system.
- Wavefront sensing and testing is critical in optics in general. Interferometry is generally the tool of choice here.

