

2018-32

Winter College on Optics in Environmental Science

2 - 18 February 2009

Cultural heritage applications of LIF I

V. Raimondi Consiglio Nazionale delle Ricerche Italy

• •

(Ifnc: (

Cultural heritage: UNESCO World Heritage Sites

Zone	Natural	Cultural	Mixed	Total	%	State Party with inscribed properties
Africa	33	40	3	76	9%	27
Arab States	4	60	1	65	7%	16
Asia-Pacific	48	125	9	182	21%	27
Europe & North America (including Israel & Russia)	54	372	9	435	50%	49
Latin America & Caribbean	35	82	3	120	14%	25
Total	174	679	25	878	100%	145

What is a lidar?

♣What is it for?

♣Why use it?

Examples

1st question ...

What is a lidar?

IFAC: LIDAR operating principles

- Light Detection And Ranging
- Fluorescence lidar is an active remote sensing technique
- extending the application of Laser Induced Fluorescence

recently applied to the investigation of the cultural heritage

• Applications: marine environment and vegetation;

(LIF) to the outdoor environment

♣What is a lidar?

♣What is it for?

♣Why use it?

Historical background

- 1840first photographic images from baloons
- Photography from aircraft WWI and WWII
- 1957: Sputnik program first artificial satellites, on board cameras
- '60s: first meteorological satellites for b/w images; first atmospheric lidars
- '70s: Landsat, first satellite dedicated to ocean and earth monitoring; first fluorescence lidar for sea monitoring
- '80s: dedicated sensors aboard satellites, such as: CZCS, AVHRR, SIR-A; fluorescence lidar for vegetation remote sensing
- '90s: improved spatial resolution sensors, SPOT;
 fluorescence lidar for cultural heritage applications

2000: improved spectral resolution sensors, ENVISAT; fluorescence lidar imaging, lidars for space applications

ICTP - Winter College on Optics in Environmental Science, 2 - 13 February 2009

♣What is a lidar?

```
♣What is it for?
```

IFAC:

♣Why use it?

♦What is a lidar?

♣What is it for?

IFAC:

♣Why use it?

The FLIDAR mobile laboratory

2nd question ...

What is a lidar for?

IFAC	Applications to the cultural heritage
• • • •	ISSUE A - Characterisation of different lithotypes and other masonry materials (bricks, mortars, etc.)
 What is a lidar? What is it for? Why use it 	ISSUE B - Detection and characterisation of protective treatments and their distribution on the surface
	ISSUE C - Detection and spectroscopic characterisation of photoautotrophic biodeteriogens
	DIAGNOSTICS and DOCUMENTATION

FLIDAR technique for the cultural heritage

What is a lidar?

♣What is it for?

♣Why use it?

Pros

- Non invasive method No scaffolds or lift required
- No sampling
- Quick to use, even on extended areas
- *In situ*, outdoor operation
- **Global assessment**

Cons

- Scientific instrumentation
- Specialised personnel
- Qualitative / quantitative data

Advantages analysis

- Non Invasive Method é essential for applications to the cultural heritage
- ♣What is a lidar?
- ♣What is it for?

IFAC:

- ♣Why use it?
- Sampling or scaffold not required Samples are not manipulated, costs are limited, monument fruibility is not affected
- Quick to use on extended areas Periodical monitoring of the stone cultural heritage with limited cost
- 📋 In situ, outdoor operation 🗳 Key role for monuments
- Global assessment É Easy to read, useful for specific measurements, support for decision-makers

Lithotypes characterization: fluorescence of natural rocks

Impurities

A. Lithotypes B. Protective

coatings

C.Biodeteriogens e.g. transition metals, rare earths
Activators, sensitizers, quenchers.

Lattice defects

 vacancies in the lattice classified on the basis of the changes in the simmetry

Fluorescence in the visible region Spectral signatures

Image: Second state Image: Second state<

Pantani et al., SPIE Proc. 4886: 151 (2003)

2	SIE1	Arenaria Pliocenica Siena	Sandstone
3	ROS	Rosso Veronese, Rosa Corallo	Limestone
4	BOV2	Rosso Veronese, Nembro	Limestone
5	BOV4	Rosso Veronese, Corso Mezzo Brocato	Limestone
6	ASIA	Rosso Veronese, Asiago	Limestone
7	FIR	Arenacea Marnosa Firenze	Sandstone
8	M2	Pozzolanic mortar	Mortar
9	BON1	Rosso Veronese, Brocato	Limestone
10	BOV5	Rosso Veronese, Corso Grosso	Limestone
11	ASIC	Rosso Veronese, Rosso Magnaboschi	Limestone
12	SIE3	Arenaria Pliocenica Siena	Sandstone
13	BOV3	Rosso Veronese, Nembro	Limestone
14	ASIB	Rosso Veronese, Corso Bianco	Limestone
15	SCA1	Scaglia, Scisto	Limestone
16	110EMAT	Ematite	Iron-formation
17	M1	Lime mortar	Mortar
18	MSI1	Montagnola Senese marble	Marble
19	MOC3	Rosso Veronese, Roan	Limestone
20	SIE2	Arenaria Pliocenica Siena	Sandstone
21	MOC1	Rosso Veronese, Mandorlato	Limestone
22	MSI2	Montagnola Senese marble	Marble
23	MOC2	Rosso Veronese, Corso Rigato	Limestone
24	MCA	Carrara marble	Marble
25	M3	Portland cement	Cement

IFAC: Fluorescence of photoautotrophic : biodeteriogens

Chla shows a fluorescence peak at about 680 nm ☐ High fluorescence guantum yield

A Lithotypes **B**. Protective

coatings

C.Bio-

Application 1 : detection of photoautotrophic biodeteriogens and their distribution on extended areas at an early stage of growth

deteriogens Accessory pigments with typical fluorescence peaks Chl a fluorescence peak shift

> Application 2 : characterization of photoautotrophic biodeteriogens

Chl a fluorescence is linked to photosintetic process Application 3 : monitoring of biocides action

IFAC: Archaeological site of Adamclisi (Constanta, Romania)

Archaeological site of Adamclisi (Constanta, Romania)

Fluorescence lidar experiments on monuments

- Parma, Italy (Oct. 1994) IFAC
- Lund, Sweden (Oct. 1997) Lund and IFAC
- Pisa, Italy (Aug. 2000) IFAC
- □ Parma, Italy (Sept. 2000) IFAC and Lund
- Ravenna, Italy (Nov. 2001) IFAC
- Constanta, Romania (Apr. 2004) IFAC
- Övedskloster, Sweden, (May 2004) Lund
- □ Colosseo, Italy (Jan. 2005) IFAC and Lund
- □ Laterano, Italy (Feb. 2005) IFAC and Lund

The Cathedral Lund

The first fluorescence lidar experiment on monuments

Parma. October 1994

IFAC: The Baptistery of Parma (October 1994)

Point fluorescence lidar monitoring

Excitation wavelength: 308 nm and 480 nm

Output data: fluorescence spectra in the 300-800 nm range

 \square Distance from the target: 30 m

IFAC: The Baptistery of Parma (October 1994) Measurements on the Baptistery Lidar measurements on the Baptistery ashlars Selection of several lithotypes of *Rosso* Veronese with petrographic features very similar to those of the ashlars Lidar measurements on the samples

The Baptistery of Parma (October 1994)

Point fluorescence measurements on the Baptistery ashlars

Raimondi et al., Appl. Optics 37: 1089 (1998)

