

2018-24

Winter College on Optics in Environmental Science

2 - 18 February 2009

Adaptive Optics: Systems and Applications

Love G.
University of Durham
U.K.

Gordon D. Love Durham University, UK

> William Herschel Telescope with GLAS Rayleigh Laser Guide Star

Photo: Tibor Agocs, Isaac Newton Group of Telescopes

Wavefront Correctors

Generic Astronomical Adaptive Optics

University of Hawaii AO System

USAF - Starfire Optical Range

Albuquerque, NM, USA

Asteroid - Vesta

Star orbiting a black hole at the centre of the Milky Way (courtesy of ESO)

- State of the Art

- All major astronomical observatories have adaptive optics systems.
- The technology is maturing
- The number of science papers exploiting AO is increasing

... so what's the problem?

- We can only look at a tiny fraction of the sky
 - Requires Laser Guide Stars
- Field of view is very narrow. Requires...
 - MCAO (multiconjugate AO)
 - GLAO (ground layer AO)
 - MOAO (multi-object AO)
- Systems all work in the infrared
 - Visible AO requires XAO (Extreme Adaptive Optics)

A: Laser Beacons or Laser Guide Stars

LASER

The solution to the lack of suitable guide stars is to create an artificial one by shining a high-power laser into the atmosphere

(Courtesy of Gemini)

Sodium Layer (~90km). This picture shows the aurora and sodium layer photographed from space

Durham's Rayleigh Laser Guide Star

Other LGS Systems

Keck

B. Wide-Field Adaptive Optics

There are 3 solutions under development

- -MCAO Multi-conjugate AO
- -GLAO Ground Layer
- -MOAO Multi-object AO

Angular Anisoplanatism

Multi-Conjugate AO

Simulation showing how correction degrades off axis, and how MCAO can correct this.

Star sizes are magnified, LGS and f.o.v ~ 2'

Courtesy of GEMINI

Tomography

Altitude Layer (phase aberration = +)

Ground Layer = Pupil (phase aberration = 0)

Courtesy of F. Rigaut, Gemini

C. Extreme AO (XAO)

- In theory this is the same as conventional AO - but with "more of everything"
 - More actuators in the DM
 - More wavefront sensing elements
- Current generation of AO systems have ~10² actuators.
- Visible AO requires 10³ 10⁴
- E.g. A 42m ELT (extremely large telescope) requires $\sim (D/r_0)^2 \sim (42/0.15)^2 \sim 10^5$ actuators.

The European Extremely Large Telescope (E-ELT) is being designed with a 42-metre primary mirror -and will be the first telescope with AO built-in: telescope mirror 4 will be a deformable mirror with over 5000 actuators.

TMT - 30m (USA)

Non-Astronomical (and Non-Military) Applications of Adaptive Optics

Other Applications

OPHTHALMIC OPTICS

- Retinal Imaging
- Optometry

LASERS

- High power laser spot control
- Optical storage
- Optical Communications

IMAGING

· Consumer optics

E.g. Optical Communications

E.g. – 100m propagation path length at Durham

(Courtesy of David Williams, Rochester)

The quick brown fox jumps over the lazy dogs Fig. 2

The quick brown fox jumps over the lazy dogs Fig. 3

Wavefront Control

Adaptive Spectacles

(Courtesy of Joshua Silver, Oxford)

Conclusions

- Astronomical AO is maturing and most observatories now have common-user systems
- We are working towards...
 - Full sky AO
 - Visible AO
 - Wide field AO
 - AO for Extremely Large Telescopes
- AO is being exploited in other areas of optics (e.g. ophthalmology) but exploitation also involves the exploitation of individual parts of a system - rather than the whole

