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Overview

•�  Approaches to modeling the terrestrial biosphere

•� Structured ecosystem models

•� Background



Predicted temperature changes over the coming century





HadCM3LC (solid black), IPSL-CM2C (solid red), IPSL-CM4-LOOP (solid yellow), 

CSM-1 (solid green), MPI (solid dark blue), LLNL (solid light blue), FRCGC (solid 
purple), UMD (dash black), UVic-2.7 (dash red), CLIMBER (dash green), and 

BERN-CC (dash blue). 

Predictions for the long-term responses of terrestrial ecosystems to climate 

change (IPCC 2007) 



HadCM3LC: Predicted collapse of Amazon ecosystems in response to rising CO2

(Cox et al. 2000) 



•� Biogeographic models

Whittaker biogeographic scheme: biome type in relation to average 

annual temperature & precipitation



Holdridge classification scheme 

Potential Evapotranspiration Ratio =

potential evapotranspiration/precipitation 

Biotemperature =

Average of temperatures > 0oC

“Vegetation is crystallized, visible climate”  (Koppen, 1936)



1 x CO2

2 x CO2

Using Biogeographic Vegetation Models to predict the 

effects of climate change   

(Holdridge

classification

Scheme)



Hemlock abundance: 

Issue #1: assumes ecosystems are in equilibrium with climate, both 

now & in the future. 

Problems with the Biogeographic approach 



Issue #2: “No-analog communities” (Williams et al 2001)  

MXPA= Mixed Parkland

[spruce, larch, ash, 
hornbeam, poplar, willow, 

sedge, and sage]

MXPA termed a a ‘no-

analog community’ 
because these species 

are not found together in 
any present-day 

vegetation community.   

i.e. Distribution of biomes 

is a macroscopic pattern 
arising from the 

responses of the 
constituent species to 

climate forcing.



Issue #3: Biosphere-atmosphere feedbacks 

- now know that this relationship is bi-directional. 

- the biogeographic approach implicitly assumes a unidirectional 

relationship between ecosystems and climate:

e.g: Amazonian deforestation predicted to change South American climate

(Shukla et al. 1990) 
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Biogeographic Models 

(Equilibrium Vegetation) 
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 Biosphere-Atmosphere Feedback Processes 



e.g. The Simple Biosphere Model, version 2 (SiB2)  (Sellers et al. 1996) 

SiB2 was one of the first 

terrestrial biosphere models 

to explicitly link canopy 

biophysics with a biological 

of photosynthesis 



Biogeographic Models 

(Equilibrium Vegetation) 

Hours               Months               Years               Decades               Centuries               Millennia     

PHYSIOLOGICAL  
Stomatal

Opening/Closure

Leaf

Phenology

BIOGEOGRAPHIC

Changes in the 

distribution of 
biomes

Weather  

Prediction

Paleoclimate

Timescales of Terrestrial Ecosystem Responses to the 

Atmosphere

Inter-annual

Variability 

PHYSIOLOGICAL  
Stomatal

Opening/Closure

Leaf

Phenology

Biophysical Models 

(Static Vegetation)   

ECOLOGICAL 

Competitive

dynamics
(changes in 

growth,

mortality & 
recruitment)

Succession

(changes in 
canopy

structure & 

composition)

Anthropogenic Climate 

Change



The Integrated Biosphere Simulator (IBiS)  (Foley et al., 1996) 

- IBiS was the first biosphere model to incorporate long-term ecosystem dynamics

scale: 1o x 1o (~104 km2)

canopy physiology ecosystem dynamics



Long-term ecosystem dynamics in big leaf terrestrial biosphere models 
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Comparison of above-ground biomass 

dynamics to observations at San 
Carlos (tropical forest) 2oN,68oW

Above-ground biomass dynamics of 

evergreen tree spp. in IBiS 

- Also the big-leaf assumption implies a single environmental niche within each 

grid cell. As a result, big-leaf models tend to predict homogeneous ecosystems 
(Gause competitive exclusion principle).

- Unrealistic timescales of response 



The long timescale at San Carlos is due to the ecological process of
succession (changes in structure and composition as the ecosystem re-

assembles following disturbance). 

Stand Age (0-200 yrs) --> 

S
p
e
c
ie

s
 ---> 

Successional heterogeneity at the San Carlos tropical forest  2oS,68oW
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Individual-based vegetation models (gap models) 

growth

height-structured

competition

mortality

dispersal + recruitment 

e.g.: SORTIE model of 
New England forests 

(Pacala & Canham et al. 1996) 



Individual-based vegetation models (gap models) 

Sato et al. 2007 

e.g.2: SEIB 
model of 
South-East
Asian Tropical 

Forests



 e.g. Variation in growth, mortality and recruitment among New 
England tree species 

Pacala. Canham 
et al (1996) 

 Traditionally gap-models were parameterized from field measurements 
of mortality, growth & recruitment in relation to resouce availability. 
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Physiologically-based gap models 

(Moorcroft et al. 2001) 

mortality

dispersal+recruitment

water
nitrogen
carbon

ha (~10-2 km2)

evapo-

transpiration

growth

~ 15 m 

leaf

carbon

fluxes

ED (Moorcroft et al. 2001) 

HYBRID (Friend et al. 1997) 



ED Model simulator dynamics at San Carlos  

(tropical forest) 2oN,68oW: 

trajectory of above-ground biomass  
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u(z,t) = U(z,y,t)
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Size-structured approximation 



Size-structured approximation 
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Light availability as a function of spatial position 



Light availability as a function of time since disturbance 



Size & age-structured 

approximationU(z,a,y, t)
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McKendrick Von-Forester Equation:

Where:

p(a)da = proportion of the grid-cell disturbed between a and a
+da years ago 

�(a,t) = rate of disturbance 

Levin & Paine (1974)

Disturbance dynamics

Landscape age structure 



(Moorcroft et al. 2001) 

A size & age-structured terrestrial biosphere model 
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ha (~10-2 km2)

ED dynamics at San Carlos Tropical forest  

(2oN,68oW): trajectory of above-ground 

biomass:

(Moorcroft et al. 2001) 

ha (~10-2 km2)

- accurately captures the behavior of corresponding individual-based model by

tracking the dynamic horizontal & vertical sub-grid scale heterogeneity in canopy 

structure.
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ED Model: Regional pattern of above-ground

biomass (AGB) after 200 year simulation (kgCm-2)

(Moorcroft et al. 2001) 
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Land-slip Malaysia

Shifting Agriculture Venezuela 

Land-Use Change Rondonia 

Fires in Amazonia 

Forms of disturbance 

Forest Pathogens Alaska 

Treefall Gap Malaysia 



Incorporating land-use change 

Albani et al. 2006 

historical fraction of agricultural land in each county 1800-2100

regional historical patterns of forest harvesting (USFS) 
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ED model: predicted impacts of land-use history on the carbon 

dynamics of the Eastern US 

Albani et al. 2006 

above gnd. biomass (tC ha-1) carbon uptake (NEP, tC ha-1 y-1) land use 



<- USFS FIA forest inventory measurements 

of current above-ground C uptake and storage

Albani et al. 2006 
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Results imply that: 

•� significant 
carbon uptake 

occurring as a 
result of land-use 

dynamics

•� ~ 2/3 of the 
uptake is forest re-

growth following 
harvesting, not 

carbon storage in 

forests.



In contrast to traditional ‘big-leaf’ biosphere models, structured 

biosphere models such as ED scale formally between fast timescale 

plant-level physiological responses to climate, and long-term large-scale 

ecosystem dynamics.

- have both realistic short-term and long-term vegetation dynamics. 

(Moorcroft et al. 2001, Moorcroft 2006) 

-  incorporate the effects of natural and anthropogenic disturbances 

(wind-throw fire, land clearing, land abandonment, forest harvesting 

etc.) on ecosystem composition, structure & function.

Enables them to:

Conclusions

-  ability to connect to measurements 


