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Malaria ward, Amana Hospital, in Dar es Salaam   
Photograph / SAMANTHA APPLETON
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Data: courtesy of  S. Hay and G.D. 
Shanks



D. Orrell.  The Future of Everything



Measles
• Airborne RNA virus
• Respiratory infection
• Mean latent period: 8 

days
• Mean infectious period:       

5 days
• Lifelong immunity after 

recovery
• Easy to diagnose

Still kills ~ 1 million people/year
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Some general background on disease models (as 
“natural oscillators”)

Cholera cycles and climate variability (ENSO): 
disentangling intrinsic and extrinsic factors

A detour into Wavelet Spectra to characterize patterns 
of variability

An application to malaria and rainfall variability

Outline



Infectious diseases as forced “natural”
oscillators

From Bryan Grenfell, Ottar Bjornstad (2004)

Courtesy: J. Vandermeer

The first (patented) 
pendulum clock
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SEIR Model with demography
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SEIR Model: Results

• Endemic equilibrium
• Explains persistence
• Equilibrium approached by damped

oscillations: recurrent epidemics

• Does not explain persistent oscillations: add 
noise or seasonality 



Intrinsic disease dynamics and seasonality
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The pathogen, Vibrio cholerae, inhabits 
aquatic environments (brackish water and 
estuaries) (Colwell et al. 1981)



From National Geographic web site





‘ Longer-term weather cycles such as ENSO have been 
invoked recently to ‘explain’ outbreaks of malaria and other 
diseases.   … none of these analyses allows an alternative 
explanation involving intrinsic cycles.’ (Rogers et al., 2002)

NATURE INSIGHT - MALARIA



Rank correlation at 90% confidence

Cholera cases 
in September Warming in January

Pascual, Chaves, Rodo, Cash, Yunus
(Climate Research 2008)



Disease population model: TSIRS

Loss of immunity??
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Smooth function of t: 
semiparametric models 
(Hastie and Tibshirani, 1990; 
Ellner et al., 1998)

1- regression step 
(weighted least square)

2- smoothing step 
(smoothing the time 
series of residuals)
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backfitting algorithm …

Koelle and Pascual. Am. Nat. 2004



I
cases

Observed 
patterns population model(s) + 

statistical inference methods

1) Decay of immunity

2) Susceptibles

3) Variability of transmission rate over time

Seasonal transmission rate

Long-term transmission rate

Residuals (unexplained variability)

Extrinsic factors 
(e.g. climate)

Intrinsic 
dynamics

Koelle and Pascual
(Am. Nat. 2004)

Koelle, Rodo, Pascual et al. 
(Nature 2005)

Pascual et al. (Climate 
Research 2008)



September residuals
and Sea Surface Temperature anomalies in January



Refractory periods: 7-months lead (hindcast) predictions

Without 
ENSO

With 
ENSO



Extreme events



• Method(s) to disentangle extrinsic forcing from 
nonlinear feedbacks within a system with 
unobserved variables

• Climate variability (ENSO, rainfall) drives cholera 
dynamics but immunity is key to the response  

• New statistical method (Ionides, Breto, and King, 
PNAS 2006, “MIF”)  continuous time, more 
flexible formulations, different types of noise,  
allows model comparisons based on 
likelihoods





~ 110 million people live in areas 
at risk of epidemic malaria in 
Africa

Estimated 110 000 deaths from 
epidemics each year  (Africa 
Malaria Report, 2003)

Malaria in Rift Valley highlands (Western Kenya)

Data: courtesy of            
S. Hay and G.D. Shanks Time 
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Which periods (or frequencies) are dominant in these dynamics?

When is any specific period dominant?



“Classical” time series: spectral 
techniques

• These seek to identify the dominant 
periodicities (or frequencies) in the data

• For example, power spectral analysis 
describes how the variance in the data is 
allocated to different frequencies

• However, this type of analysis is 
appropriate for data whose statistical 
properties do not vary with time (i.e. are 
stationary)



(a) A line graph showing the monthly incidence (cases per 100,000) of P. falciparum malaria 
incidence (cases per 100,000) in Kericho from January 1966 to December 1998

Hay S. I. et.al. PNAS 2000;97:9335-9339

©2000 by The National Academy of Sciences



The periodogram …



From Cazelles et al. (2007)



The Wavelet Spectrum
tells us about local variability





The Wavelet Transform
Decomposes signals over dilated and translated functions called “mother 
wavelets” that have two parameters, one for the time position, , the 
other for the scale, a (or f , with f~1/a).
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Back to unstable malaria in a Kenyan highland

Pascual et al. (in prep.)
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TSIR model: does disease dynamics account for the cycles? Yes and 
No





Coherence between rainfall and malaria:



r=0.7

p=0.0002

r=0.6

p=0.003



Malaria dynamics exhibit cycles of period ~ 2  (and 3) years, 
as well as longer cycles of period ~ 4 

The shorter cycles appear to be extrinsic and driven by 
rainfall. 

Epidemic outbreaks are evident in the 80’s and are 
particularly pronounced in the 90’s, a pattern coincident with 
a long-term trend in transmission

The shorter cycles can resonate with disease dynamics and 
contribute to oscillations at a longer period (4 years), a 
pattern that is enhanced by the trend in transmission



King, Ionides, Pascual, Bouma
(Nature, 2008)



King, Ionides, Pascual, Bouma
(Nature, 2008)
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Earn, Rohani, Bolker, Grenfell, Science 287, 667-670 (2000)

Low births / High vacc High births / Low vacc





King et al., (2008)



TSIRS

Short 
immunity

Data 

King et al. (Nature, 2008)




