The Abdus Salam 4
International Centre for Theoretical Physics (4

PO

2022-14

Workshop on Theoretical Ecology and Global Change

2 - 18 March 2009

Climate variability and epidemic cycles: from understanding the past to
anticipating the future II

Mercedes Pascual

Dept. of Ecology & Evolutionary Biology
Center for the Study of Complex Systems
University of Michigan
and
Howard Hughes Medical Institute

U.S.A.

Strada Costiera | |, 34014 Trieste, ltaly - Tel. +39 040 2240 |1 I; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it



Ja ..
Gimk At

-

e | \‘ Courtesy: ICD
Photograph / SAMANTHA APPLETON | . - Bangladesh




Outline

Back to cholera and climate variability: estimating
parameters in an ODE model that incorporates noise (a
method based on numerical simulations and a selection
process ...)

Back to epidemic malaria, but now address the role of
climate change

Climate change and pathogen evolution: the evolution
of drug resistance

Use this example to introduce the basics of Adaptive
Dynamics




Historical cholera mortality
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King, lonides, Pascual, Bouma
(Nature, 2008)
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King, lonides, Pascual, Bouma
(Nature, 2008)



Two-path model

R0
P(t)

w = environmental reservoir

At) = (eﬂﬂ”dtﬁseas(t) (t))




New method (MIF)

likelihood maximization by iterated filtering

= can accommodate:

flexible model formulations
e continuous time
 unobserved variables (e.g. susceptibles)

* stochasticity, nonstationarity

¢ °® Mmeasurement error

» based on well-studied sequential Monte Carlo methods
(particle filters)




Maximum likelihood estimation

Model

A specific parameter set - Probability of the observed

outcome / given the data




Clinical cases data yl’ o yn
X1,....,.Xn unobserved variables

# 0 vector of constant parameters

measurement model (observation process) X, =y,
hj process noise (unobserved process )
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Model comparison

model log likelihood

AlC

}'E

two-path -3775.8
SIRS -3794.3
SARMA((2,2) x(1,1)) -3804.5
Koelle & Pascual (2004) -3840.1
seasonal mean -3989.1

7591.6
7622.6
7625.0

8026.1

0.848
0.849
0.846
0.82
0.64

Environmental
reservoir
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Areas at risk of
epidemic malaria

Data: courtesy of
S. Hay and G.D. Shanks







Points of contention:

Evidence for significant trends in climate data?

Do such trends result in a significant change in
the disease itself?

Is drug resistance a more important factor than
climate change?

(Is climate variability --- e.g. ENSO, rainfall
interannual variation--- a major driver of disease
dynamics?)
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Temperature

Temperature (without trend) :>
Rainfall (daily)

Population model for the vector
abundance (larvae and adults)
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Malaria transmission model

Merozoites =4
o L0 Liver Schizonts
. FPsY

Loss of
Immunity

"\ infection

e Larvae

treatment recovery

e Adults in three
classes: ?

uninfected

exposed

1
1
1 I

Infectious i

Dreaths Deaths
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Temperature

(CRU; mean
adjusted for

altitude) )

Rainfall

(Monthly
and daily
data)

Model fitted with a Genetic

e larva development (T)

e Plasmodium
development (T)

e Adult and larval survival
(T, R)

« Gonotrophic Cycle
(biting rate , T)

 Carrying capacity (R)
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Algorithm to the observed cases G

in the 1970s’




CASES

CASES
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Number of simulations
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CASES

OBS. CASES
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SOME CONCLUSIONS

« Temperature warming can explain a significant fraction of
the increase In the incidence of malaria in African
highlands from the 1970s to the 1990s.

A small temperature increase can lead to a large increase
In the disease:

-> doubling to quadrupling annual malaria
cases on average (all years)

-> with eight-fold increases in monthly
cases during epidemic months

However, the predicted cases based on the temperature
trend are still below the observed values -> other drivers
at play




Synergy between increase transmission due to climate
change and the evolution of drug resistance?
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A detour Into adaptive dynamics

“...strain B outcompetes strain A in the environment that
results from the prevalence of A, while strain C wins
against B in the environment set by B, and A beats C Iin
the C environment.

The salient feature of such a scenario is frequency-
dependent selection: selective pressures and the resulting
Invasion success depend on the composition of the
established, or resident, pathogen population against
which a variant strain is competing. Since frequency-
dependent selection is ubiquitous in nature, ... , the
absence of an optimization principle is the ruIe, rather than
the exception, in realistic pathogen-host interactions.”

FROM ADAPTIVE DYNAMICS OF PATHOGEN-HOST INTERACTIONS
ULF DIECKMANN




Adaptive Dynamics

« Adaptive dynamics is a set of techniques developed
during the 1990s for understanding the long-term
conseqguences of small mutations in the traits expressing
the phenotype. They link population dynamics to
evolutionary dynamics and incorporates and generalizes
the fundamental idea of frequency-dependent selection
from game theory

Two fundamental assumptions are: (1) the resident
population can be assumed to be in a dynamical
equilibrium when new mutants appear, and (2) the
eventual fate of such mutants can be inferred from their

Initial growth rate when rare in the environment consisting
of the resident

FROM “THE HITCHHIKER’S GUIDE TO ADAPTIVE
DYNAMICS by A. Braanstrom and N.V. Festenberg




Brannstrom and v. Festenberg: Adaptive Dynamics
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Figure 2: Examples of pairwise invasibility plots. Gray shading denotes positive invader growth
rate S.(m), white shading negative S_(m], the black diagonal lines S.(m) = 0. a) Evolutionarily
stable strategy but not convergence stable. Such strategies should be rare in nature: if the strategy is
once established it cannot be invaded locally, but it cannot be approached gradually in small steps,
either. b) Evolutionarily stable strategy and convergence stable. A possible endpoint of evolution: the
strategy can be attained gradually and then it will resist any invaders successfully. ¢) Convergence
stable strategy but not evolutionarily stable. A scenario where a population can become dimorphie:
the singular strategv can be established gradually, but then it can be invaded by mutants both above
and below the resident strategy at the same time.




Brannstrom and v. Festenberg: Adaptive Dynamics

Hlzrarsd FIF Reglon of coexiatence

Figure 4: lllustration of the graphical method for obtaining the region of coaxistence. a) A pairwise
invasibility plot from the Snowdrift game {Hauert & Doebeli, 2004). b) The same pairwise invasibility
plot mirrored over the main diagonal. ¢) The first two panels overlaid in which the region of coexistence
iz visible as the dark grey area. Note that protected dimorphisms are possible even though the singular
strategy 1= evolutionarily stable and selection thus stabilising.




A continuous character?

® “Drug resistance in malaria does not usually arise through a single
mutational step, but more commonly arises as the end of a longer process
during which parasites accumulate mutations and become ever more
tolerant of the drug” (Acta Tropica, |. Hastings and Watkins 2005)

= \WWHO classification:

v'S (sensitive): Asexual parasitaemia disappears from
peripheral blood within 7 days of treatment

v R1 (low grade resistance): Par. disappears but
reappears within 7-14 days

v R11 (medium grade): decrease par but not complete
clearance from peripheral blood

v R111 (resistant): no marked reduction of asexual
parasitaemia.



A simple model:

= Recovery takes longer for untreated cases (Hastings and Watkins, 2005)

» There is a cost to resistance (e.g. study in Sudan on seasonal patterns!
Babiker et al. 2005)
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Some equations:

The transmission equation for the resident strain (note that it
assumes that the mutant strain has a negligible abundance):

dl S
—=p1——ul-|(1-T)y +Tv_ ]I
dt lBr N ILlI” [( ) Tr]

Gives us the “environment”

for the invasion by the S  u, +[(A1-T)v +Tv, ]
mutant strain: = B

N oy

From which we can

dl S

— =01 —— —(A=-TWw+Tv, |l

*



Pairwise invasibility plots: is a mutant strain with a higher
resistance level able to invade a resident strain at the equilibrium of the
epidemiological model?

T =0.01
B = 0.006

Resistance level — Mutant

Resistance level — Resident

>

Higher transmission rate



Conclusions

Drug resistance and climate change can interact,
resulting in the faster evolution of resistance as
temperature increases

But we have ignored the seasonal and interannual
dynamics ...

Also, we have considered a very simple model of
population dynamics (SIR or SIRS)

A more complex story if we consider different levels of
Immunity ... we do not yet fully understand the interplay
of transmission intensity, including climate change, and
the evolution of drug resistance!




Talisuna et al., Am. J. Trop. Med. Hyg, 77 (2007)

Table 4. Relative risk for malaria parasite resistance (clinical treatiment
failure) to chloroquine (CQ) or to sulfadoxine-pyrimethamine (SP) for
three scenarios observed in Uganda

Relative risk Relative risk
Scenario CQresistance  (95% CI) SP resistance (95% CI)

Low parasite 28-:0% 31 2:4% 0-5
prevalence® (1-2-7-7) (0-1-4-2)
Medium parasite 9:6% 1-0 5-1% 1-0
prevalencc? (reference) (reference)
High parasite 28:0% 32 11-8% 23
prevalence® (1-6-6-4) (0-9-5-9)

*“Estimate derived from data for one site.

*Estimate derived from meta-analysis of data for 2 sites.
“Estimate derived from meta-analysis of data for 4 sites.
95% CI1, 95% confidence interval.
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Back to points of contention:

Is there evidence for significant trends in climate data?
YES

If so, can such a trend result in a significant change in the
disease itself? YES

An alternative explanation for the observed exacerbation
of epidemic malaria is drug resistance.

NOT INDEPENDENT FROM CHANGES IN
TRANSMISSION AND THEREFORE, IN CLIMATE

(Does climate variability --- e.9. ENSO, rainfall
Interannual variation--- drive disease dynamics?) .

YES: LAST LECTURE
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Clinically-immune hosts as a refuge for drug-sensitive
malaria parasites

Klein, Smith, Boni and Laxminarayan, Malaria Journal 2008
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Wild type

Susceptible

Resistant

Wild type
Resistant l

\

Prevalance

Log o_f Vectorial Capacity Artzy and Pascual
(in prep.)




— Epidemic malaria in India

Gujarat and Rajasthan: semi-arid
regions vulnerable to malaria
epidemics

Malaria monthly records at the
district level since 1976

oL

ContrOI a.nd treatment 188 9% sz 1994 1e% 198 2000 2002 7004 2008
efforts at the moment
are retroactive

1988 1990 1992 1994 1996 1998 2000 2002 2004 2006
TIME




The simpler model: SEIRS

ftsg = Alt)

HET

HIR

This model includes vector “dynamics”™ in the force of infection A(t)
as follows:



HIR

larvae

Uninfected
adults

Infected
adults




The force of infection through the vector introduces
a distributed delay in the system

4
1(t
At) = [ ba’eX (1) U)ot —1)di,
0 N(ty) N
Probability that a
mosquito that
N acquired a parasite at
Biting rate time t, is sill alive and
carries a fully
I developed infectious
Uninfected v parasite at time t
mosquitos Fraction of
infected

humans



We allow X(t) to vary in time: we replace it by a parameter that varies
seasonally and at other temporal scales. Itis the “environmental or process
noise” obtained when fitting the model to the data

0= Bb, W )) ple—ty)dt,

/N

Seasonal variation “Process error” or

“Process noise”

NOTE: In practice, we do not use a ‘sum’ or integral but a chain
of compartments that implements the distributed delay





