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1. Introduction

The basic principle of evolution, survival of the fittest∗, was outlined by the naturalist
Charles Darwin in his 1859 book On the origin of species. Though controversial at the
time, the central ideas remain virtually unchanged to this date, even though much more
is now known about the biological basis of inheritance. Darwin expressed his arguments
verbally, but many attempts have since then been made to formalise the theory of
evolution. The perhaps most well known are population genetics (Roughgarden, 1979)
which aim to model the biological basis of inheritance but usually at the expense of
ecological detail, quantitative genetics (Falconer & Mackay, 1996) which incorporates
quantitative traits influenced by genes at many loci and evolutionary game theory
(Hofbauer & Sigmund, 1998) which ignores genetic detail but incorporates a high
degree of ecological realism, in particular that the success of any given strategy depends
on the frequency at which strategies are played in the population, a concept known as
frequency dependence.

Adaptive Dynamics is a set of techniques developed during the 1990s for under-
standing the long-term consequences of small mutations in the traits expressing the
phenotype. They link population dynamics to evolutionary dynamics and incorporate
and generalises the fundamental idea of frequency dependent selection from game the-
ory. The number of papers using Adaptive Dynamics techniques is increasing steadily
as Adaptive Dynamics is gaining ground as a versatile tool for evolutionary modelling.
This manuscript is aimed at researchers and students wanting to learn Adaptive Dy-
namics to the level necessary to follow the arguments made in these papers.

In the next section we introduce the fundamental ideas behind Adaptive Dynamics.
Then, in Section 3, the theory is presented in detail for monomorphic populations. In
particular, we will explain the invasion exponent, pairwise-invasibility plots, the selec-

∗To be precise, the phrase ‘survival of the fittest’ was coined by the philosopher Herbert Spencer
and adopted by Darwin from the fifth edition of On the origin of species
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tion gradient, Evolutionarily Singular Strategies and the canonical equation. Section
4 extends these concepts to polymorphic populations and introduces trait evolution

plots. Finally we conclude with a discussion of the applicability and limitations of the
Adaptive Dynamics’ techniques presented here.

2. Fundamental ideas

Two fundamental ideas of Adaptive Dynamics are that the resident population can
be assumed to be in a dynamical equilibrium when new mutants appear, and that the
eventual fate of such mutants can be inferred from their initial growth rate when rare in
the environment consisting of the resident. This rate is known as the invasion exponent
when measured as the initial exponential growth rate of mutants (Diekmann, 2003),
and as the basic reproductive number when it measures the expected total number of
offspring that a mutant individual will produce in a life time. It can be thought of and
is indeed sometimes also referred to as invasion fitness of mutants. In order to make use
of these ideas we require a mathematical model that explicitly incorporates the traits
undergoing evolutionary change. The model should describe both the environment
and the population dynamics given the environment, but in many cases the variable
part of the environment consist only of the demography of the current population. We
then determine the invasion exponent, the initial growth rate of a mutant invading the
environment consisting of the resident. Depending on the model, this can be trivial or
very difficult, but once determined the Adaptive Dynamics techniques can be applied
independent of the model structure. In the next section we will introduce the basic
theory for monomorphic populations.

3. Monomorphic evolution

A population consisting of individuals with the same trait is called monomorphic. If
not explicitly stated differently we will assume that the trait is a real number and we
will write r and m for the trait value of the monomorphic resident population and
that of an invading mutant respectively.

3.1. Invasion exponent and selection gradient

The invasion exponent Sr(m) is defined as the expected growth rate of an initially
rare mutant in the environment set by the resident, which simply means the frequency
of each phenotype (trait value) whenever this suffices to infer all other aspects of the
equilibrium environment, such as the demographic composition and the availability of
resources. For each r the invasion exponent can be thought of as the fitness landscape
experienced by an initially rare mutant. The landscape changes with each successful
invasion (see Figure 1) as is the case in evolutionary game theory, but in contrast with
the classical view of evolution as an optimisation process towards ever higher fitness.
We will always assume that the resident is at its demographic attractor, and as a
consequence Sr(r) = 0 for all r as otherwise the population would grow indefinitely.

The selection gradient is defined as the slope of the invasion exponent at m = r (see
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Figure 1: Plot of the invasion exponent Sr(m), the expected growth rate of a rare mutant in the
environment set by the resident (solid lines), as a function of the mutant trait value m, for two
illustrative cases. The dashed lines denote the local tangent of Sr(m) at m = r where its slope
corresponds to the selection gradient S

′

r
(r). a) The population is monomorphic and consists of only

the phenotypes corresponding to trait value r1. Mutants with higher trait values have positive expected
growth rate and can hence invade. b) A mutant with trait value r2 has invaded and successfully replaced
the resident. Since the population now consists of a new phenotype, namely that corresponding to trait
value r2, the fitness landscape itself has changed. Note that the invasion exponent vanishes exactly
when the mutant trait equals that of the resident, m = r.

Figure 1), S′

r
(r). If the sign of the invasion exponent is positive (negative) mutants

with slightly higher (lower) trait values may successfully invade. This follows from the
linear approximation Sr(m) ≈ S′

r
(r)(m − r). which holds whenever m ≈ r.

3.2. Pairwise-invasibility plots

The invasion exponent represents the fitness landscape as experienced by a rare mu-
tant. In a large (infinite) population only mutants with trait values m for which Sr(m)
is positive are able to successfully invade. The generic outcome of an invasion is that
the mutant replaces the resident, and the fitness landscape as experienced by a rare
mutant changes. To determine the outcome of the resulting series of invasions pairwise-
invasibility plots (PIPs) are often used. These show for each resident trait value r all
mutant trait values m for which Sr(m) is positive. Three examples are given in figure
2. The grey area marked with ‘+’ corresponds to pairs r and m for which a mutant
with trait value m can successfully invade a resident population with trait value r,
i.e. Sr(m) > 0. Note that Sr(m) is zero at the diagonal m = r. In PIPs the fitness
landscapes as experienced by a rare mutant (see Fig. 1) correspond to the vertical
lines where the resident trait value r is constant.
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Figure 2: Examples of pairwise invasibility plots. Gray shading denotes positive invader growth
rate Sr(m), white shading negative Sr(m), the black diagonal lines Sr(m) = 0. a) Evolutionarily
stable strategy but not convergence stable. Such strategies should be rare in nature: if the strategy is
once established it cannot be invaded locally, but it cannot be approached gradually in small steps,
either. b) Evolutionarily stable strategy and convergence stable. A possible endpoint of evolution: the
strategy can be attained gradually and then it will resist any invaders successfully. c) Convergence
stable strategy but not evolutionarily stable. A scenario where a population can become dimorphic:
the singular strategy can be established gradually, but then it can be invaded by mutants both above
and below the resident strategy at the same time.

3.3. Evolutionarily singular strategies

The selection gradient S′

r
(r) determines the direction of evolutionary change. If it is

positive (negative) a mutant with a slightly higher (lower) trait-value will generically
invade and replace the resident. But what will happen if S′

r
(r) vanishes? Seemingly

evolution should come to a halt at such a point. While this is a possible outcome, the
general situation is more complex. Traits or strategies r∗ for which S′

r∗
(r∗) = 0, are

known as evolutionarily singular strategies. Near such points the fitness landscape as
experienced by a rare mutant is locally ‘flat’. There are three qualitatively different
ways in which this can occur as shown in Figure 3. Of these only the non-degenerate
cases corresponding to fitness maxima and fitness minima are of interest here (because
in degenerate cases finite evolutionary steps would lead past the local ’flatness’). The
first, a fitness maximum, is known as an evolutionarily stable strategy (ESS) which,
once established, cannot be invaded by nearby mutants. In contrast, Figure 3b shows a
fitness minimum where disruptive selection will occur and the population branch into
two morphs. This process, known as evolutionary branching, will be further discussed
in Section 4.2.

In Figure 2 the singular strategies are found where the boundary of the region of
positive invasion fitness intersects the diagonal. The first two PIPs show evolutionarily
stable strategies (fitness maxima) since the invasion exponent is negative both above
and below the singular strategy, while the third PIP shows a fitness minimum. A
singular strategies that is attracting in the sense that nearby monomorphic populations
can be invaded by mutants closer to the strategy is known as a convergence stable
strategy (CSS). In Figure 2, only the two panels to the right (b and c) are convergence
stable. There are four logical combinations of ESS and CSS and they can all be realised.
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Figure 3: Three qualitatively different singular strategies: a) a local fitness maximum representing a
possible endpoint of evolutionary change. b) Local fitness minimum where evolutionary branching can
occur. c) A degenerate case where the criteria from section 3.3 fail because the second order derivative
of Sr(m) vanishes, but practically these cases are without significance, since finite evolutionary steps
will lead evolution past these points. Fitness is defined here as the expected growth rate of an initially
rare mutant and given by the invasion exponent.

If a strategy is both evolutionarily and convergence stable it represents a possible
endpoint of evolutionary change, while a convergence stable strategy which is a fitness
minimum is a branching point where the population will become dimorphic.

Singular strategies can be located and classified once the selection gradient is known.
To locate singular strategies, it is sufficient to find the points for which the selection
gradient vanishes, i.e. to find r∗ such that S′

r∗
(r∗) = 0. These can be classified then

using the second derivative test from basic calculus. If the second derivative evaluated
at r∗ is negative (positive) the strategy represents a local fitness maximum (minimum).
Hence, for an evolutionarily stable strategy r∗ we have

S′′

r∗
(r∗) < 0 (1)

If this does not hold the strategy is evolutionarily unstable and, provided that it
also convergence stable, evolutionary branching will eventually occur. For a singular
strategy r∗ to be convergence stable monomorphic populations with slightly lower or
slightly higher trait values must be invadable by mutants with trait values closer to
r∗. That this can happen the selection gradient S′

r
(r) in a neighbourhood of r∗ must

be positive for r < r∗ and negative for r > r∗. This means that the slope of S′

r
(r) as

a function of r at r∗ is negative, or equivalently

d

dr
S′

r
(r)

∣

∣

∣

r=r∗
< 0. (2)

The criterion for convergence stability given above can also be expressed using
second derivatives of the invasion exponent, and the classification can be refined to
span more than the simple cases considered here, as discussed in Appendix A.1 (see also
Geritz et al., 1998). However, for practical purposes the concept of singular strategies
as points where the invasion gradient vanishes and the basic criteria given by equations
1 and 2 for evolutionarily and convergence stability are often sufficient.
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3.4. Jump processes and the canonical equation

The evolutionary process can be envisaged as a jump process: a sequence of successfully
established mutant trait values together with the times at which the invasions occur.
For large populations the process is directional as only mutants with positive initial
growth rate can invade. This process can be simulated once explicit assumptions about
the rate of mutations, the distribution of mutant trait values around the parent trait
value and the establishment probability of mutants has been made. Mutations are
often assumed to occur with a constant probability at each birth event, hence at a
rate proportional to the birth rate, and mutant trait values often assumed normally
distributed around the parent trait value. The establishment probability can either
be determined from the model, or taken to be max (0, (b − d)/d) where b and d are
the birth and death rates respectively. This is suggested by the theory of branching
processes (see e.g. Grimmett & Stirzaker, 1992), where this is the probability that
starting from one individual a population where individuals divide at a rate b and die
at a rate d will not go extinct in finite time.

In Dieckmann & Law (1996) it is shown that when mutations are small, the evolu-
tionary jump process can be approximated with a differential equation known as the
canonical equation of Adaptive Dynamics. It states that the change of a resident trait
in (evolutionary) time is proportional to the selection gradient,

r′(t) ∝ S′

r
(r) (3)

where the constant of proportion is expressed in terms of the variance of the distribu-
tion of trait values. See Dieckmann & Law (1996) and Champagnat et al. (2001), for
derivations and analyses.

4. Polymorphic evolution

The normal outcome of a successful invasion is that the mutant replaces the resident.
However, other outcomes are also possible (Geritz et al., 2002), in particular both
the resident and the mutant may persist and the population then becomes dimorphic.
Assuming that a trait persists in the population if and only if its expected growth-rate
when rare is positive, the condition for coexistence among two traits r1 and r2 is

Sr1
(r2) > 0 and Sr2

(r1) > 0,

where r1 and r2 are often referred to as morphs. Such a pair is a protected dimorphism.
The set of all protected dimorphism is known as the region of coexistence. Graphically,
the region consist of the overlapping parts when a pair-wise invasibility plot is mirrored
over the diagonal (see Figure 4).

4.1. Invasion exponent and selection gradients in polymorphic populations

The invasion exponent is generalised to dimorphic populations in a straightforward
manner, as the expected growth rate Sr1,r2

(m) of a rare mutant in the environment
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Figure 4: Illustration of the graphical method for obtaining the region of coexistence. a) A pairwise
invasibility plot from the Snowdrift game (Hauert & Doebeli, 2004). b) The same pairwise invasibility
plot mirrored over the main diagonal. c) The first two panels overlaid in which the region of coexistence
is visible as the dark grey area. Note that protected dimorphisms are possible even though the singular
strategy is evolutionarily stable and selection thus stabilising.

set by the two morphs r1 and r2. The slope of the local fitness landscape for a mutant
close to r1 or r2 is now given by the selection gradients

S′

r1,r2
(r1) and S′

r1,r2
(r2).

In practise, it is often difficult to determine the dimorphic selection gradient and
invasion exponent analytically, and one often has to resort to numerical computations.

4.2. Evolutionary branching

The emergence of protected dimorphism near singular points during the course of
evolution is not unusual, but its significance depends on whether selection is stabilising
or disruptive. In the latter case, the traits of the two morphs will diverge in a process
often referred to as evolutionary branching. Geritz et al. (1998) presents a compelling
argument that disruptive selection only occurs near fitness minima. To understand
this heuristically consider a dimorphic population r1 and r2 near a singular point.
By continuity Sr(m) ≈ Sr1,r2

(m) and, since Sr1,r2
(r1) = Sr1,r2

(r2) = 0, the fitness
landscape for the dimorphic population must be a perturbation of that shown in
Figure 3a with the region of positive invasion fitness lying between r1 and r2.

4.3. Trait evolution plots

Evolution after branching is illustrated using trait evolution plots. These show the
region of coexistence, the direction of evolutionary change and whether points where
points where the selection gradient vanishes are fitness maxima or minima. Evolution
may well lead the dimorphic population outside the region of coexistence, in which
case one morph is extinct and the population once again becomes monomorphic.

Figure 5 shows an example of a trait evolution plot. The lines are evolutionary

isoclines where one of the two selection gradients vanishes. These are found by solving

S′

r1,r2
(r1) = 0 or S′

r1,r2
(r2) = 0.
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Figure 5: Levene’s soft selection model studied by Geritz et al. (1998). The pairwise invasibility plot
shows the evolutionary dynamics for a monomorphic population. Since selection at the convergence
stable singular point is disruptive, the population eventually becomes dimorphic with evolutionary
dynamics given by the trait evolution plot. The arrows show the direction of evolutionary change.
Thick lines are evolutionarily stable isoclines, where directional selection in one of the two morphs
cease. In this case, the trait evolution plot shows the final evolutionary outcome to be a stable protected
dimorphisms with approximate trait values r1 = 2 and r2 = 0 where the ordering is arbitrary.

An isocline can be either a fitness maximum or fitness minima for mutants close to the
morph (in fact the situation is exactly identical to the monomorphic case if we consider
the other morph as being a constant part of the environment). We recommend using
the same conventions as Geritz et al. (1998), that is using thin lines to denote fitness
minima, and thick lines for fitness maxima.

4.4. Evolutionarily singular coalitions

An intersections of two isoclines at a point is known as a singular coalitions Geritz et
al. (1998). If the strategies r1 and r2 at the intersection are stable strategies when con-
sidered separately with the other trait value fixed the coalition is stable and represent
a possible endpoint where evolutionary change cease. To test for stability the analyt-
ical condition for evolutionary stability can be applied to each morph, however there
is no natural generalisation of a CSS (Geritz et al., 1998) and convergence stability is
most easily inferred directly from the trait evolution plot.

4.5. Connection of the isoclines to the boundary

The boundaries of the region of coexistence are extinction threshold for morphs, and
hence for a dimorphic population r1 and r2 the boundary where r2 becomes extinct
is given implicitly by Sr1

(r2) = 1 and for points in the region of coexistence close to
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this boundary the approximate relationship Sr1,r2
(m) ≈ Sr1

(m) holds. This simple
observation has implications for the connection of the isoclines to the boundary. If
S′

r1,r2
(r1) = 0 on the boundary we also have S′

r1
(r1) = 0 so r1 must be a singular point

of a monomorphic population.

The isoclines defined by S′

r1,r2
(r2) = 0 connects to the boundary where it has a

vertical tangent. The reason is that at every other point on the boundary, the selection
gradient for r2 points towards the interior of the region of coexistence (either up or
down). If the isocline would connected to such a point it would divide the region into
two areas where the selection gradient for r2 points in opposing directions, and one of
these would not be towards the interior which is a contradiction. By symmetry we get
corresponding results for the other isoclines. For a more detailed discussion see Geritz
et al. (1998)

4.6. Further evolutionary branching

Evolutionary branching in a morph r1 under small but fixed mutational steps may
occur whenever the fitness landscape as given by the function Sr1,r2

(m) has a local
minimum at r1. The most likely branching point is an unstable singular coalition, but
branching could also happen along an isocline.

5. Example

To clarify the basic concepts for monomorphic populations we now consider a pop-
ulation of n individuals where individuals reproduce at a rate b and die with the
density-dependent rate dn. The number of individuals n(t) at time t then grows logis-
tically according to the linear differential equation n′(t) = n(t)(b − n(t)d) subject to
some initial condition n(0) = n0. In particular the equilibrium population density n∗

is found by solving 0 = n∗(b − dn∗) with the non-trivial solution n∗ = b/d. Though
not relevant here, it should be noted that a change of time-scale reduces the number
of parameters to 1.

We will now assume that the birth-rate is subject to evolutionary change without
constraint. The model must now be extended to include, at the very minimum, two
populations n1 and n2 with respective trait values b1 and b2. Writing n(t) = n1(t) +
n2(t) we have

n′(t) = b1n1(t) + b2n2(t) − dn(t)2 (4)

We now introduce the suggestive notation nr(t) = n1(t), r = b1 and nm(t) = n2(t),
m = b2 for the respective trait values of the resident and mutant type. The invasion
exponent is then defined as the initial per-capita growth rate of the mutant when it
enters the equilibrium environment set by the mutant, which in this situation amounts
to the logarithmic derivative of n2 evaluated for nr = n∗ and nm = 0

Sr(m) = m − r.

Note that in particular Sr(r) = 0. The corresponding pair-wise invasibility plot is
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Figure 6: Pairwise invasibility plots of the example of a birth-death system. The relevant trait is
the birth rate here. a) PIP according to the system given in (4). The birth rate can evolve to ever
higher values. b) PIP according to the system given in 5 with c(r) = 10−1 exp(r). The singular point
is evolutionarily and convergence stable and located at r ≈ 2.3.

given in Figure 6a. As expected, the birth rate evolves towards ever higher values. We
can change this by introducing a cost of higher birth rates

n′(t) = n(t)(r − c(r) − n(t)d) (5)

yielding the invasion exponent

Sr(m) = m − c(m) − r + c(r).

Provided b−c(b) is bounded we expect an evolutionary endpoint as a convergence and
evolutionarily stable strategy according to criteria (1) and (2). For c(r) = 10−1 exp(r)
we get the pairwise invasibility plot shown in Figure 6b with the singular point at
r = ln(10) ≈ 2.3.

6. Discussion

The aim of this manuscript has been to introduce the basic concepts of Adaptive
Dynamics. As with any introductory text, there are many issues that we have not
touched upon. These include aspects of the treatment of higher dimensional traits,
the problem of finding conditions for when a successfully invading mutant successfully
ousts the resident, and the possibility of incorporating genetic detail. We have also
left out any discussion of the implications of evolutionary branching–one of the most
interesting findings of Adaptive Dynamics–for understanding speciation in sexually
reproducing populations.
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Even though there are many areas of Adaptive Dynamics which we haven’t covered,
the basic techniques are usually sufficient for practical purposes, and when not the
material in this manuscript should be enough to read and understand many of the
articles that advances or uses the theory.

7. Further reading

A good introductory text to Adaptive Dynamics is Diekmann (2003), which presents
the basics of monomorphic evolution using many instructive examples. The next nat-
ural step is Geritz et al. (1998) and Metz et al. (1996) which describe the theory in
depth. To better understand how the techniques can be used in studying more com-
plex models, a manuscript studying a sample model such as Geritz et al. (1999) or
Brännström & Dieckmann (2005) may prove helpful.

The canonical equation is introduced by Dieckmann & Law (1996), studied in more
detail by Champagnat et al. (2001) and extended to physiologically structured pop-
ulations in Durinx & Metz (2005). Champagnat et al. (2006) puts this into context
by considering ways in which microscopic stochastic processes can be studied on a
macroscopic scale. Geritz et al. (2002) introduces the Tube Theorem which says that
the sum of the resident and a sufficiently similar mutant populations canonically re-
main inside a ‘tube’. Two more recent publications about the population dynamical
foundations, basically the study of when a successfully invading mutant may be ex-
pected to replace the resident population, are Geritz (2003) and Gyllenberg et al.
(2003). This is an active area of research, so please check the forward citations for the
latest developments.

A list of articles related to Adaptive Dynamics is currently maintained by Éva Kisdi
at http://www.helsinki.fi/~mgyllenb/addyn.htm. For an enjoyable evening read
in front of the fireplace we recommend Leimar (2001) which argues that a ‘Darwinian
demon’ able to control the mutations that occur can have a profound impact on
evolution even if the actual population dynamics is beyond its control.
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A. Appendix

A.1. Local classification of singular points

For a mathematical derivation of the criteria of ESS, CSS, and dimorphism we first
need to conceive the invasion exponent Sr(m) depending on m with the coefficient
r as a function depending on two variables: Sr(m) ≡ S(r,m). Both perspectives are
exactly equivalent, but with the invasion exponent S seen as a map representing a two-
dimensional fitness landscape as in the PIPs in Fig. 2 heuristic analytical arguments
can easily be used for classification. We focus on the curvature of S(r,m) landscape
at singular points given in the second order derivatives following the argumentation
of Geritz et al. (1998). The ESS criterion doesn’t depend on the curvature in the
direction of changed resident traits r and simply corresponds to the condition for a
local maximum as argued in section 3.3

∂2S

∂m2

∣

∣

∣

r=m=r∗
< 0 (ESS criterion).

For a singular strategy to be CSS the selection gradient needs to point towards the
singular strategy, i.e. its sign changes from positive to negative when going through
r∗. So S′

r
(m) must be a decreasing function near the singular point

d

dr
S′

r
(r) =

∂2S

∂r2

∣

∣

∣

r=m=r∗
+

∂2S

∂m∂r

∣

∣

∣

r=m=r∗
< 0. (6)

Since Sr(r) = 0 we have

0 =

(

d

dr

)2

Sr(r) =
∂2S

∂r2

∣

∣

∣

m=r

+ 2
∂2S

∂m∂r

∣

∣

∣

m=r

+
∂2S

∂m2

∣

∣

∣

m=r

(7)

and thus (6) can be rewritten as

∂2S

∂r2

∣

∣

∣

r=m=r∗
>

∂2S

∂2m

∣

∣

∣

r=m=r∗
(CSS criterion). (8)

If a singular point is convergence stable but evolutionarily unstable, selection near
the singular point is disruptive and evolutionary branching will eventually occur. How-
ever, even with stabilising selection protected dimorphism may occur near a singular
point provided there are points near the singular strategy where both S(r,m) and
S(m, r) are positive. This means that the line m = 2r∗ − r passing through the sin-
gular point at an angle of -45◦ must locally be in a region where S is positive. Thus,
S(r, 2r∗− r) must have a minimum at r∗ meaning that at this point its second deriva-
tive is positive. Hence,

∂2S

∂m2

∣

∣

∣

r=m=r∗
− 2

∂2S

∂r∂m

∣

∣

∣

r=m=r∗
+

∂2S

∂r2

∣

∣

∣

r=m=r∗
> 0.
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which using again (7) gives the criterion

∂2S

∂m2

∣

∣

∣

r=m=r∗
> −

∂2S

∂r2

∣

∣

∣

r=m=r∗
(dimorphism criterion)

for protected dimorphisms to exist near the singular strategy.

A.2. Terms and concepts in brief

Term Description

invasion exponent Function giving the expected growth rate of a rare
mutant

selection gradient Derivative of the invasion exponent with respect
to the mutant trait evaluated at the resident trait
value. Gives information on the direction and speed
of evolutionary change.

Evolutionarily singular strategy Point or strategy where the selection gradient van-
ishes.

Evolutionarily stable strategy Singular strategy that cannot be invaded by (lo-
cally) neighbouring mutants.

Convergence stable strategy Singular strategy which, within a neighbourhood, is
approached gradually.

Monomorphic population Population consisting of only one phenotype.
Dimorphic population Population with two phenotypes.
Polymorphic population Population with several phenotypes.
Pairwise invasibility plot Graphical illustration of invasion success for

monomorphic populations.
Trait evolution plots Graphical illustration of invasion success when the

population is dimorphic.
Canonical equation Differential equation describing a deterministic ap-

proximation of evolutionary dynamics with small
mutational steps.
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