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Nonlinear stochastic dynamical systems are widely used to model
systems across the sciences and engineering. Such models are natural
to formulate and can be analyzed mathematically and numerically.
However, difficulties associated with inference from time-series data
about unknown parameters in these models have been a constraint
on their application. We present a new method that makes maximum
likelihood estimation feasible for partially-observed nonlinear sto-
chastic dynamical systems (also known as state-space models) where
this was not previously the case. The method is based on a sequence
of filtering operations which are shown to converge to a maximum
likelihood parameter estimate. We make use of recent advances in
nonlinear filtering in the implementation of the algorithm. We apply
the method to the study of cholera in Bangladesh. We construct
confidence intervals, perform residual analysis, and apply other
diagnostics. Our analysis, based upon a model capturing the intrinsic
nonlinear dynamics of the system, reveals some effects overlooked by
previous studies.

maximum likelihood � cholera � time series

S tate space models have applications in many areas, including
signal processing (1), economics (2), cell biology (3), mete-

orology (4), ecology (5), neuroscience (6), and various others
(7–9). Formally, a state space model is a partially observed
Markov process. Real-world phenomena are often well modeled
as Markov processes, constructed according to physical, chem-
ical, or economic principles, about which one can make only
noisy or incomplete observations.

It has been noted repeatedly (1, 10) that estimating parameters
for state space models is simplest if the parameters are time-varying
random variables that can be included in the state space. Estimation
of parameters then becomes a matter of reconstructing unobserved
random variables, and inference may proceed by using standard
techniques for filtering and smoothing. This approach is of limited
value if the true parameters are thought not to vary with time, or
to vary as a function of measured covariates rather than as random
variables. A major motivation for this work has been the observa-
tion that the particle filter (9–13) is a conceptually simple, flexible,
and effective filtering technique for which the only major drawback
was the lack of a readily applicable technique for likelihood
maximization in the case of time-constant parameters. The contri-
bution of this work is to show how time-varying parameter algo-
rithms may be harnessed for use in inference in the fixed-parameter
case. The key result, Theorem 1, shows that an appropriate limit of
time-varying parameter models can be used to locate a maximum
of the fixed-parameter likelihood. This result is then used as the
basis for a procedure for finding maximum likelihood estimates for
previously intractable models.

We use the method to further our understanding of the
mechanisms of cholera transmission. Cholera is a disease en-
demic to India and Bangladesh that has recently become rees-
tablished in Africa, south Asia, and South America (14). It is
highly contagious, and the direct fecal–oral route of transmission
is clearly important during epidemics. A slower transmission
pathway, via an environmental reservoir of the pathogen, Vibrio
cholerae, is also believed to be important, particularly in the
initial phases of epidemics (15). The growth rate of V. cholerae
depends strongly on water temperature and salinity, which can
fluctuate markedly on both seasonal and interannual timescales

(16, 17). Important climatic fluctuations, such as the El Niño
Southern Oscillation (ENSO), affect temperature and salinity,
and operate on a time scale comparable to that associated with
loss of immunity (18, 19). Therefore, it is critical to disentangle
the intrinsic dynamics associated with cholera transmission
through the two main pathways and with loss of immunity, from
the extrinsic forcing associated with climatic fluctuations (20).

We consider a model for cholera dynamics that is a continuous-
time version of a discrete-time model considered by Koelle and
Pascual (20), who in turn followed a discrete-time model for
measles (21). Discrete-time models have some features that are
accidents of the discretization; working in continuous time avoids
this, and also allows inclusion of covariates measured at disparate
time intervals. Maximum likelihood inference has various conve-
nient asymptotic properties: it is efficient, standard errors are
available based on the Hessian matrix, and likelihood can be
compared between different models. The transformation-
invariance of maximum likelihood estimates allows modeling at a
natural scale. Non-likelihood approaches typically require a vari-
ance-stabilizing transformation of the data, which may confuse
scientific interpretation of results. Some previous likelihood-based
methods have been proposed (22–25). However, the fact that
non-likelihood-based statistical criteria such as least square predic-
tion error (26) or gradient matching (27) are commonly applied to
ecological models of the sort considered here is evidence that
likelihood-based methods continue to be difficult to apply. Recent
advances in nonlinear analysis have brought to the fore the need for
improved statistical methods for dealing with continuous-time
models with measurement error and covariates (28).

Maximum Likelihood via Iterated Filtering
A state space model consists of an unobserved Markov process, xt,
called the state process and an observation process yt. Here, xt takes
values in the state space �dx, and yt in the observation space �dy. The
processes depend on an (unknown) vector of parameters, �, in �d�.
Observations take place at discrete times, t � 1, . . ., T; we write the
vector of concatenated observations as y1:T � (y1, . . ., yT); y1:0 is
defined to be the empty vector. A model is completely specified by
the conditional transition density f(xt�xt�1, �), the conditional dis-
tribution of the observation process f(yt�y1:t�1, x1:t, �) � f(yt�xt, �), and
the initial density f(x0��). Throughout, we adopt the convention that
f(���) is a generic density specified by its arguments, and we assume
that all densities exist. The likelihood is given by the identity
f(y1:T��) � �t�1

T f(yt�y1:t�1, �). The state process, xt, may be defined
in continuous or discrete time, but only its distribution at the
discrete times t � 1, . . ., T directly affects the likelihood. The
challenge is to find the maximum of the likelihood as a function
of �.
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The basic idea of our method is to replace the original model
with a closely related model, in which the time-constant param-
eter � is replaced by a time-varying process �t. The densities
f(xt�xt�1, �), f( yt�xt, �), and f(x0��) of the time-constant model are
replaced by f(xt�xt�1, �t�1), f( yt�xt, �t), and f(x0��0). The process
�t is taken to be a random walk in �d�. Our main algorithm
(Procedure 1 below) and its justification (Theorem 1 below)
depend only on the mean and variance of the random walk, which
are defined to be

E��t��t�1� � �t�1 Var�� t�� t�1� � �2�
E��0� � � Var��0� � �2c2� . [1]

In practice, we use the normal distributions specified by Eq. 1. Here,
� and c are scalar quantities, and the new model in Eq. 1 is identical
to the fixed-parameter model when � � 0. The objective is to obtain
an estimate of � by taking the limit as �3 0. � is typically a diagonal
matrix giving the respective scales of each component of �; more
generally, it can be taken to be an arbitrary positive–definite
symmetric matrix. Procedure 1 below is standard to implement, as
the computationally challenging step 2(ii) requires using only well
studied filtering techniques (1, 13) to calculate

�̂t � �̂t��, �� � E��t� y1:t�
[2]

Vt � Vt��, �� � Var�� t� y1:t�1�

for t � 1, . . ., T. We call this procedure maximum likelihood via
iterated filtering (MIF).

Procedure 1. (MIF)

1. Select starting values �̂(1), a discount factor 0 	 � 	 1, an
initial variance multiplier c2, and the number of iterations N.

2. For n in 1, . . ., N
(i) Set �n � �n�1. For t � 1, . . ., T, evaluate �̂t

(n) � �̂t(�̂(n),
�n) and Vt,n � Vt(�̂(n), �n).
(ii) Set �̂(n
1) � �̂(n) 
 V1,n �t�1

T Vt,n
�1(�̂t

(n) � �̂t�1
(n) ),

where �̂0
(n) � �̂(n).

3. Take �̂(N
1) to be a maximum likelihood estimate of the
parameter � for the fixed parameter model.

The quantities �̂t
(n) can be considered local estimates of �, in

the sense that they depend most heavily on the observations
around time t. The updated estimate is a weighted average of the
values �̂t

(n), as explained below and in Supporting Text, which is
published as supporting information on the PNAS web site. A
weighted average of local estimates is a heuristically reasonable
estimate for the fixed ‘‘global’’ parameter �. In addition, taking
a weighted average and iterating to find a fixed point obviates the
need for a separate optimization algorithm. Theorem 1 asserts
that (under suitable conditions) the weights in Procedure 1 result
in a maximum likelihood estimate in the limit as �3 0. Taking
a weighted average is not so desirable when the information
about a parameter is concentrated in a few observations: this
occurs for initial value parameters, and modifications to Proce-
dure 1 are appropriate for these parameters (Supporting Text).

Procedure 1, with step 2(i) implemented using a sequential
Monte Carlo method (see ref. 13 and Supporting Text), permits
flexible modeling in a wide variety of situations. The methodology
requires only that Monte Carlo samples can be drawn from
f(xt�xt�1), even if only at considerable computational expense, and
that f(yt�xt, �) can be numerically evaluated. We demonstrate this
below with an analysis of cholera data, using a mechanistic con-
tinuous-time model. Sequential Monte Carlo is also known as
‘‘particle filtering’’ because each Monte Carlo realization can be
viewed as a particle’s trajectory through the state space. Each
particle filtering step prunes particles in a way analogous to
Darwinian selection. Particle filtering for fixed parameters, like

natural selection without mutation, is rather ineffective. This ex-
plains heuristically why Procedure 1 is necessary to permit inference
for fixed parameters via particle filtering. However, Procedure 1
and the theory given below apply more generally, and could be
implemented using any suitable filter.

Example: A Compartment Model for Cholera
In a standard epidemiological approach (29, 30), the population is
divided into disease status classes. Here, we consider classes labeled
susceptible (S), infected and infectious (I), and recovered (R1, . . .,
Rk). The k recovery classes allow flexibility in the distribution of
immune periods, a critical component of cholera modeling (20).
Three additional classes B, C, and D allow for birth, cholera
mortality, and death from other causes, respectively. St denotes the
number of individuals in S at time t, with similar notation for other
classes. We write Nt

SI for the integer-valued process (or its real-
valued approximation) counting transitions from S to I, with
corresponding definitions of Nt

BS, Nt
SD, etc. The model is shown

diagrammatically in Fig. 1. To interpret the diagram in Fig. 1 as a
set of coupled stochastic equations, we write

dSt � dNt
BS � dNt

SI � dNt
SD � dNt

RkS

dIt � dNt
SI � dNt

IR1
� dNt

IC � dNt
ID

dRt
1 � dNt

IR1
� dNt

R1R2
� dNt

R1D

···

dRt
k � dNt

Rk�1Rk
� dNt

RkS � dNt
RkD.

The population size Pt is presumed known, interpolated from
census data. Transmission is stochastic, driven by Gaussian white
noise

dNt
SI � �tStdt � ��It�Pt�St dWt [3]

�t � 	tIt�Pt � 


In Eq. 3, we ignore stochastic effects at a demographic scale
(infinitesimal variance proportional to St). We model the re-
maining transitions deterministically

dNt
IR1

� �Itdt; dNt
Rj�1Rj

� rkRt
j�1dt;

dNt
RkS � rkRt

kdt; dNt
SD � mStdt;

dNt
ID � mItdt; dNt

RjD � mRt
jdt;

dNt
IC � mcItdt; dNt

BS � dPt � mPtdt.

[4]

Time is measured in months. Seasonality of transmission is
modeled by log(	t) � �k�0

5 bksk(t), where {sk(t)} is a periodic
cubic B-spline basis (31) defined so that sk(t) has a maximum at
t � 2k and normalized so that �k�0

5 sk(t) � 1; � is an
environmental stochasticity parameter (resulting in infinitesimal
variance proportional to St

2); 
 corresponds to a non-human
reservoir of disease; 	tIt�Pt is human-to-human transmission;

Fig. 1. Diagrammatic representation of a model for cholera population
dynamics. Each individual is in S (susceptible), I (infected), or one of the classes
Rj (recovered). Compartments B, C, and D allow for birth, cholera mortality,
and death from other causes, respectively. The arrows show rates, interpreted
as described in the text.
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1�� gives mean time to recovery; 1�r and 1�(kr2) are respectively
the mean and variance of the immune period; 1�m is the life
expectancy excluding cholera mortality, and mc is the mortality
rate for infected individuals. The equation for dNt

BS in Eq. 4 is
based on cholera mortality being a negligible proportion of total
mortality. The stochastic system was solved numerically using the
Euler–Maruyama method (32) with time increments of 1�20
month. The data on observed mortality were modeled as yt �
�[Ct � Ct�1, �2(Ct � Ct�1)2], where Ct � Nt

IC. In the
terminology given above, the state process xt is a vector repre-
senting counts in each compartment.

Results
Testing the Method Using Simulated Data. Here, we provide evi-
dence that the MIF methodology successfully maximizes the
likelihood. Likelihood maximization is a key tool not just for
point estimation, via the maximum likelihood estimate (MLE),
but also for profile likelihood calculation, parametric bootstrap
confidence intervals, and likelihood ratio hypothesis tests (34).

We present MIF on a simulated data set (Fig. 2 A), with
parameter vector �* given in Table 1, based on data analysis

and�or scientifically plausible values. Visually, the simulations
are comparable to the data in Fig. 2B. Table 1 also contains the
resulting estimated parameter vector �̂ from averaging four
MIFs, together with the maximized likelihood. A preliminary
indicator that MIF has successfully maximized the likelihood is
that �(�̂) � �(�*). Further evidence that MIF is closely approx-
imating the MLE comes from convergence plots and sliced
likelihoods (described below), shown in Fig. 3. The SEs in Table
1 were calculated via the sliced likelihoods, as described below
and elaborated in Supporting Text. Because inference on initial
values is not of primary relevance here, we do not present
standard errors for their estimates. Were they required, we
would recommend profile likelihood methods for uncertainty
estimates of initial values. There is no asymptotic justification of
the quadratic approximation for initial value parameters, since
the information in the data about such parameters is typically
concentrated in a few early time points.

Applying the Method to Cholera Mortality Data. We use the data in
Fig. 2B and the model in Eqs. 3 and 4 to address two questions:
the strength of the environmental reservoir effect, and the
influence of ENSO on cholera dynamics. See refs. 19 and 20 for
more extended analyses of these data. A full investigation of the
likelihood function is challenging, due to multiple local maxima
and poorly identified combinations of parameters. Here, these
problems are reduced by treating two parameters (m and r) as
known. A value k � 3 was chosen based on preliminary analysis.
The remaining 15 parameters (the first eleven parameters in
Table 1 and the initial values S0, I0, R0

1, R0
2, R0

3, constrained to

Fig. 2. Data and simulation. (A) One realization of the model using the
parameter values in Table 1. (B) Historic monthly cholera mortality data for
Dhaka, Bangladesh. (C) Southern oscillation index (SOI), smoothed with local
quadratic regression (33) using a bandwidth parameter (span) of 0.12.

Table 1. Parameters used for the simulation in Fig. 2A together
with estimated parameters and their SEs where applicable

�* �̂ SE(�̂)

b0 �0.58 �0.50 0.13
b1 4.73 4.66 0.15
b2 �5.76 �5.58 0.42
b3 2.37 2.30 0.14
b4 1.69 1.77 0.08
b5 2.56 2.47 0.09

  104 1.76 1.81 0.26
� 0.25 0.26 0.01
� 0.80 0.78 0.06
1�� 0.75
mc 0.046
1�m 600
1�r 120
k 3
� �3,690.4 �3,687.5

Log likelihoods, �, evaluated with a Monte Carlo standard deviation of 0.1,
are also shown.

Fig. 3. Diagnostic plots. (A–C) Convergence plots for four MIFs, shown for
three parameters. The dotted line shows �*. The parabolic lines give the sliced
likelihood through �̂, with the axis scale at the top right. (D–F) Corresponding
close-ups of the sliced likelihood. The dashed vertical line is at �̂.

18440 � www.pnas.org�cgi�doi�10.1073�pnas.0603181103 Ionides et al.



sum to P0) were estimated. There is scope for future work by
relaxing these assumptions.

For cholera, the difference between human-to-human trans-
mission and transmission via the environment is not clear-cut. In
the model, the environmental reservoir contributes a component
to the force of infection which is independent of the number of
infected individuals. Previous data analysis for cholera using a
mechanistic model (20) was unable to include an environmental
reservoir because it would have disrupted the log-linearity
required by the methodology. Fig. 4 shows the profile likelihood
of 
 and resulting confidence interval, calculated using MIF.
This translates to between 29 and 83 infections per million
inhabitants per month from the environmental reservoir, be-
cause the model implies a mean susceptible fraction of 38%. At
least in the context of this model, there is clear evidence of an
environmental reservoir effect (likelihood ratio test, P 	 0.001).
Although our assumption that environmental transmission has
no seasonality is less than fully reasonable, this mode of trans-
mission is only expected to play a major role when cholera
incidence is low, typically during and after the summer monsoon
season (see Fig. 5). Human-to-human transmission, by contrast,
predominates during cholera epidemics.

Links between cholera incidence and ENSO have been identified
(18, 19, 46). Such large-scale climatic phenomena may be the best
hope for forecasting disease burden (36). We looked for a rela-
tionship between ENSO and the prediction residuals (defined
below). Prediction residuals are robust to the exact form of the
model: they depend only on the data and the predicted values, and
all reasonable models should usually make similar predictions. The
low-frequency component of the southern oscillation index (SOI),
graphed in Fig. 2C, is a measure of ENSO available during the
period 1891–1940 (19); low values of SOI correspond to El Niño

events. Rodó et al. (19) showed that low SOI correlates with
increased cholera cases during the period 1980–2001 but found only
weak evidence of a link with cholera deaths during the 1893–1940
period. Simple correlation analysis of standardized residuals or
mortality with SOI reveals no clear relationship. Breaking down by
month, we find that SOI is strongly correlated with the standardized
residuals for August and September (in each case, r � �0.36, P �
0.005), at which time cholera mortality historically began its sea-
sonal increase following the monsoon (see Fig. 5). This result
suggests a narrow window of opportunity within which ENSO can
act. This is consistent with the mechanism conjectured by Rodó et
al. (19) whereby the warmer surface temperatures associated with
an El Niño event lead to increased human contact with the
environmental reservoir and greater pathogen growth rates in the
reservoir. Mortality itself did not correlate with SOI in August (r �
�0.035, P � 0.41). Some weak evidence of negative correlation
between SOI and mortality appeared in September (r � �0.22, P �
0.063). Earlier work (20), based on a discrete-time model and with
no allowance for an environmental reservoir, failed to resolve this
connection between ENSO and cholera mortality in the historical
period: to find clear evidence of the external climatic forcing of the
system, it is essential to use a model capable of capturing the
intrinsic dynamics of disease transmission.

Discussion
Procedure 1 depends on the viability of solving the filtering
problem, i.e., calculating �̂t and Vt in Eq. 2. This is a strength of the
methodology, in that the filtering problem has been extensively
studied. Filtering does not require stationarity of the stochastic
dynamical system, enabling covariates (such as Pt) to be included in
a mechanistically plausible way. Missing observations and data
collected at irregular time intervals also pose no obstacle for
filtering methods. Filtering can be challenging, particularly in
nonlinear systems with a high-dimensional state space (dx large).
One example is data assimilation for atmospheric and oceano-
graphic science, where observations (satellites, weather stations,
etc.) are used to inform large spatio-temporal simulation models:
approximate filtering methods developed for such situations (4)
could be used to apply the methods of this paper.

The goal of maximum likelihood estimation for partially ob-
served data is reminiscent of the expectation–maximization (EM)
algorithm (37), and indeed Monte Carlo EM methods have been
applied to nonlinear state space models (24). The Monte Carlo EM
algorithm, and other standard Monte Carlo Markov Chain meth-
ods, cannot be used for inference on the environmental noise
parameter � for the model given above, because these methods rely
upon different sample paths of the unobserved process xt having
densities with respect to a common measure (38). Diffusion pro-
cesses, such as the solution to the system of stochastic differential
equations above, are mutually singular for different values of the
infinitesimal variance. Modeling using diffusion processes (as in
above) is by no means necessary for the application of Procedure
1, but continuous-time models for large discrete populations are
well approximated by diffusion processes, so a method that can
handle diffusion processes may be expected to be more reliable for
large discrete populations.

Procedure 1 is well suited for maximizing numerically estimated
likelihoods for complex models largely because it requires neither
analytic derivatives, which may not be available, nor numerical
derivatives, which may be unstable. The iterated filtering effectively
produces estimates of the derivatives smoothed at each iteration
over the scale at which the likelihood is currently being investigated.
Although general stochastic optimization techniques do exist for
maximizing functions measured with error (39), these methods are
inefficient in terms of the number of function evaluations required
(40). General stochastic optimization techniques have not to our
knowledge been successfully applied to examples comparable to
that presented here.

Fig. 4. Profile likelihood for the environmental reservoir parameter. The
larger of two MIF replications was plotted at each value of 
 (circles), maxi-
mizing over the other parameters. Local quadratic regression (33, 35) with a
bandwidth parameter (span) of 0.5 was used to estimate the profile likelihood
(solid line). The dotted lines construct an approximate 99% confidence inter-
val (ref. 34 and Supporting Text) of (75  10�6, 210  10�6).

Fig. 5. Superimposed annual cycles of cholera mortality in Dhaka, 1891–
1940.
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Each iteration of MIF requires similar computational effort to
one evaluation of the likelihood function. The results in Fig. 3
demonstrate the ability of Procedure 1 to optimize a function of
13 variables using 50 function evaluations, with Monte Carlo
measurement error and without knowledge of derivatives. This
feat is only possible because Procedure 1 takes advantage of the
state-space structure of the model; however, this structure is
general enough to cover relevant dynamical models across a
broad range of disciplines. The EM algorithm is similarly ‘‘only’’
an optimization trick, but in practice it has led to the consider-
ation of models that would be otherwise intractable. The com-
putational efficiency of Procedure 1 is essential for the model
given above, where Monte Carlo function evaluations each take
�15 min on a desktop computer.

Implementation of Procedure 1 using particle filtering con-
veniently requires little more than being able to simulate paths
from the unobserved dynamical system. The new methodology
is therefore readily adaptable to modifications of the model,
allowing relatively rapid cycles of model development, model
fitting, diagnostic analysis, and model improvement.

Theoretical Basis for MIF
Recall the notation above, and specifically the definitions in Eqs.
1 and 2.

Theorem 1. Assuming conditions (R1–R3) below,

lim
�30

�
t�1

T

Vt
�1� �̂ t � �̂ t�1� � � log f� y1:T�� , � � 0� , [5]

where �g is defined by [�g]i � g��i and �̂0 � �. Furthermore,
for a sequence �n 3 0, define �̂(n) recursively by

�̂�n
1� � �̂�n� � V1,n �
t�1

T

V t,n
�1��̂t

�n� � �̂t�1
�n� �, [6]

where �̂t
(n) � �̂t(�̂(n), �n) and Vt,n � Vt(�̂(n), �n). If there is a �̂

with ��̂(n) � �̂���n
2 3 0 then � log f(y1:T�� � �̂, � � 0) � 0.

Theorem 1 asserts that (for sufficiently small �n), Procedure
1 iteratively updates the parameter estimate in the direction of
increasing likelihood, with a fixed point at a local maximum of
the likelihood. Step 2(ii) of Procedure 1 can be rewritten as
�̂(n
1) � V1,n{�t�1

T�1 (V t,n
�1 � V t
1,n

�1 )�̂t
(n) 
 (V T,n

�1 )�̂ T
(n)}. This

makes �̂(n
1) a weighted average, in the sense that V1{�t�1
T�1 (V t

�1

� V t
1
�1 ) 
 V T

�1)} � Id�
, where Id�

is the d�  d� identity matrix.
The weights are necessarily positive for sufficiently small �n

(Supporting Text).
The exponentially decaying �n in step 2(i) of Procedure 1 is

justified by empirical demonstration, provided by convergence
plots (Fig. 3). Slower decay, �n

2 � n�	 with 0 	 	 	 1, can give
sufficient conditions for a Monte Carlo implementation of
Procedure 1 to converge successfully (Supporting Text). In our
experience, exponential decay yields equivalent results, consid-
erably more rapidly. Analogously, simulated annealing provides
an example of a widely used stochastic search algorithm where
a geometric ‘‘cooling schedule’’ is often more effective than
slower, theoretically motivated schedules (41).

In the proof of Theorem 1, we define ft(�) � f(yt�y1:t�1, �t �
�). The dependence on � may be made explicit by writing ft(�) �
ft(�, �). We assume that y1:T, c and � are fixed: for example, the
constant B in R1 may depend on y1:t. We use the Euclidean norm
for vectors and the corresponding norm for matrices, i.e., �M� �
sup�u��1 �u�Mu�, where u� denotes the transpose of u. We assume
the following regularity conditions.

R1. The Hessian matrix is bounded, i.e., there are constants B
and �0 such that, for all � 	 �0 and all �t � �d�, ��2ft(�t, �)�
	 B.

R2. E[��t � �̂t�1�2� y1:t�1] � O(�2).
R3. E[��t��̂t�1�3� y1:t�1] � o(�2).

R1 is a global bound over �t � �d�, comparable to global
bounds used to show the consistency and asymptotic normality
of the MLE (42, 43). It can break down, for example, when the
likelihood is unbounded. This problem can be avoided by
reparameterizing to keep the model away from such singulari-
ties, as is common practice in mixture modeling (44). R2–R3
require that a new observation cannot often have a large amount
of new information about �. For example, they are satisfied if �0:t,
x1:t, and y1:t are jointly Gaussian. We conjecture that they are
satisfied whenever the state space model is smoothly parame-
trized and the random walk �t does not have long tails.

Proof of Theorem 1. Suppose inductively that �Vt� � O(�2) and
��̂t�1 � �� � O(�2). This holds for t � 1 by construction. Bayes’
formula gives

f��t� y1:t�

f��t� y1:t�1�
�

ft��t�

� ft��t�f��t� y1:t�1�d�t
[7]

�
ft��̂t�1� � ��t � �̂t�1���ft��̂t�1� � Rt

ft��̂t�1� � O��2�
[8]

� �1 � ��t � �̂t�1��� log f t� �̂ t�1� � Rt�f t� �̂ t�1��

� �1 � O��2�� . [9]

The numerator in Eq. 8 comes from a Taylor series expansion of
ft(�̂t), and R1 implies �Rt� � B��t � �̂t�1�2�2. The denominator
then follows from applying this expansion to the integral in Eq.
7, invoking R2, and observing that Eq. 1 implies E[�t� y1:t�1] �
�̂t�1. We now calculate

�̂t � �̂t�1 � E��t � �̂t�1� y1:t� [10]

� ���t � �̂t�1�f��t� y1:t�d�t

� Vt� log f t� �̂ t�1� � o��2� [11]

� Vt� log f t�� , � � 0� � o��2� . [12]

Eq. 11 follows from Eq. 10 using Eq. 9 and R3. Eq. 12 follows
from Eq. 11 using the induction assumptions on �̂t�1 and Vt; Eq.
12 then justifies this assumption for �̂t. A similar argument gives

Vt
1 � Var�� t
1�y1:t� � Var�� t�y1:t� � �2�

� E��� t � �̂ t��� t � �̂ t�� �y1:t� � �2�

� E��� t � �̂ t�1��� t � �̂ t�1�� �y1:t�

� � �̂ t � �̂ t�1�� �̂ t � �̂ t�1�� � �2� [13]

� Vt � �2� � o��2�, [14]

where Eq. 14 follows from Eq. 13 via Eqs. 9 and 12 and the
induction hypothesis on Vt. Eq. 14 in turn justifies this hypoth-
esis. Summing Eq. 12 over t produces

�
t�1

T

Vt
�1��̂t � �̂t�1� � �

t�1

T

� log f t�� , � � 0� � o�1� ,
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which leads to Eq. 5. To see the second part of the theorem, note
that Eq. 6 and the requirement that ��̂(n) � �̂���n

23 0 imply that

�
t�1

T

V t
�1��̂�n�, �n���̂t��̂

�n�, �n� � �̂t�1��̂
�n�, �n�� � o�1�.

Continuity then gives

lim
n

�
t�1

T

Vt
�1� �̂ , �n� �̂ t� �̂ , �n� � �̂ t�1� �̂ , �n�) � 0.

which, together with Eq. 5, yields the required result.

Heuristics, Diagnostics, and Confidence Intervals
Our main MIF diagnostic is to plot parameter estimates as a
function of MIF iteration; we call this a convergence plot.
Convergence is indicated when the estimates reach a single
stable limit from various starting points. Convergence plots were
also used for simulations with a known true parameter, to
validate the methodology. The investigation of quantitative
convergence measures might lead to more refined implementa-
tions of Procedure 1.

Heuristically, � can be thought of as a ‘‘cooling’’ parameter,
analogous to that used in simulated annealing (39). If � is too
small, the convergence will be ‘‘quenched’’ and fail to locate a
maximum. If � is too large, the algorithm will fail to converge in
a reasonable time interval. A value of � � 0.95 was used above.

Supposing that �i has a plausible range [�i
lo, �i

hi] based on prior
knowledge, then each particle is capable of exploring this range
in early iterations of MIF (unconditional on the data) provided
��iiT is on the same scale as �i

hi � �i
lo. We use �ii

1/2 � (�i
hi �

�i
lo)�2�T with �ij � 0 for i � j.
Although the asymptotic arguments do not depend on the

particular value of the dimensionless constant c, looking at con-
vergence plots led us to take c2 � 20 above. Large values c2 � 40
resulted in increased algorithmic instability, as occasional large
decreases in the prediction variance Vt resulted in large weights in
Procedure 1 step 2(ii). Small values c2 � 10 were diagnosed to result
in appreciably slower convergence. We found it useful, in choosing
c, to check that [Vt]ii plotted against t was fairly stable. In principle,
a different value of c could be used for each dimension of �; for our
example, a single choice of c was found to be adequate.

If the dimension of � is even moderately large (say, d� � 10), it
can be challenging to investigate the likelihood surface, to check

that a good local maximum has been found, and to get an idea of
the standard deviations and covariance of the estimators. A useful
diagnostic, the ‘‘sliced likelihood’’ (Fig. 3B), plots �(�̂ 
 h�i) against
�̂i 
 h, where �i is a vector of zeros with a one in the ith position.
If �̂ is located at a local maximum of each sliced likelihood, then �̂
is a local maximum of �(�), supposing �(�) is continuously differ-
entiable. Computing sliced likelihoods requires moderate compu-
tational effort, linear in the dimension of �. A local quadratic fit is
made to the sliced log likelihood (as suggested by ref. 35), because
�(�̂ 
 h�i) is calculated with a Monte Carlo error. Calculating the
sliced likelihood involves evaluating log f(yt�y1:t�1, �̂ 
 h�i), which
can then be regressed against h to estimate (��i) log f(yt�y1:t�1, �̂).
These partial derivatives may then be used to estimate the Fisher
information (ref. 34 and Supporting Text) and corresponding SEs.
Profile likelihoods (34) can be calculated by using MIF, but at
considerably more computational expense than sliced likelihoods.
SEs and profile likelihood confidence intervals, based on asymp-
totic properties of MLEs, are particularly useful when alternate
ways to find standard errors, such as bootstrap simulation from the
fitted model, are prohibitively expensive to compute. Our experi-
ence, consistent with previous advice (45), is that SEs based on
estimating Fisher information provide a computationally frugal
method to get a reasonable idea of the scale of uncertainty, but
profile likelihoods and associated likelihood based confidence
intervals are more appropriate for drawing careful inferences.

As in regression, residual analysis is a key diagnostic tool for state
space models. The standardized prediction residuals are {ut(�̂)}
where �̂ is the MLE and ut(�) � [Var(yt�y1:t�1, �)]�1/2 (yt �
E[ yt�y1:t�1, �]). Other residuals may be defined for state space
models (8), such as E�� t�1

t dWs�y1:T, �̂] for the model in Eqs. 3 and
4. Prediction residuals have the property that, if the model is
correctly specified with true parameter vector �*, {ut(�*)} is an
uncorrelated sequence. This has two useful consequences: it gives
a direct diagnostic check of the model, i.e., {ut(�̂)} should be
approximately uncorrelated; it means that prediction residuals are
an (approximately) prewhitened version of the observation process,
which makes them particularly suitable for using correlation tech-
niques to look for relationships with other variables (7), as dem-
onstrated above. In addition, the prediction residuals are relatively
easy to calculate using particle-filter techniques (Supporting Text).
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