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Supplementary Equations

SIRS and two-path model equations. We let S(t) denote the real-valued approximation to
the (integer-valued) number of individuals in class S at time t. I(t), R1(t), . . . , Rk(t), Y (t) are
defined similarly. The diagram in Fig. 1B is interpreted as a system of coupled stochastic differential
equations,

dS

dt
= kεRk + ρ Y +

dH

dt
(t) + δ H(t)− (λ(t) + δ)S

dI

dt
= c λ(t)S − (m+ γ + δ) I

dY

dt
= (1− c)λ(t)S − (ρ+ δ)Y (1)

dR1

dt
= γ I − (k ε+ δ)R1

...
dRk
dt

= k εRk−1 − (k ε+ δ)Rk

In the case c = 1, these equations collapse to the SIRS model. Environmental stochasticity enters
through noise added to the time-varying force of infection, λ(t). This is modeled by

λ(t) = ω + [β̄ eβtrend t βseas(t) + σ ξ(t)]
I(t)
H(t)

.

Here ξ(t) = dW/dt(t), Gaussian white noise1. Although the Brownian motion W (t) is not differen-
tiable, ξ(t) is interpreted via the convention that ξ(t) dt = dW (t). Multiplying Eq. 1 through by dt
then gives an infinitesimal equation. The Gaussian infinitesimal dW (t) is basic to the construction
and solution of stochastic differential equations2,3. The term β̄ eβtrend t βseas(t) +σ ξ(t) corresponds
to human-to-human transmission. Seasonality of transmission is modeled by

log βseas(t) =
5∑

k=0

bk sk(t),

where {sk(t)} is a periodic cubic B-spline basis4 defined so that sk(t) has a maximum at t =
(2k+1)/12 and normalized so that

∑5
k=0 sk(t) = 1. Here, time is measured in units of years; βtrend

captures a long-term change in transmission rates; σ is an environmental stochasticity parameter,
resulting in infinitesimal variance proportional to S2; and ω corresponds to a non-human reservoir
of disease. The scaling constant β̄ = 1 yr−1.

All other transitions in Eq. 1 except those from S to I and Y , are modeled deterministically,
ignoring demographic stochasticity. The parameter c is the probability that an exposure leads
to a contagious infection; γ is the rate at which individuals recover; 1/ε is the mean duration of
immunity; 1/

√
k is the coefficient of variation of the immune period; 1/ρ is the mean duration of

short-term immunity; 1/δ is the life expectancy excluding cholera mortality. Analysis of a subset
of districts showed that the shape parameter k = 3 gave the best results. We fixed k at this value
for all subsequent analyses.

The population size H(t), and hence also dH/dt, are treated as known via interpolation from
decadal census data. The equation for dS/dt in Eq. 1 is based on cholera mortality being a
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negligible proportion of total mortality. The number of fatal cholera cases for the n-th month,
n = 1, . . . , 600, is modeled as Mn =

∫ n/12
(n−1)/12mI(t) dt. The relationship of Mn to the observed

mortality yn is modeled by a conditional Gaussian distribution, yn ∼ normal(Mn, τ
2M2

n). This
allows for variability in the accuracy of reporting, with variance is proportional to M2

n. It allows
for over-reporting, e.g., due to misdiagnosis, as well as under-reporting.

There is some subtlety in the correct interpretation of β and ω. In the context of the models,
these quantities are just two components of the force of infection: β scales that component pro-
portional to the size of the infective pool; ω quantifies the component independent of the infective
pool. From the perspective of the disease dynamics, the distinguishing property of “human-to-
human” transmission is not whether it occurs through water, food, fomites, or still another route,
but whether its rate is influenced by previous levels of infection in the population, i.e., through a
dynamical feedback. Transmission from a reservoir is from this perspective unambiguously distin-
guished from “human-to-human” transmission by its being effectively decoupled from the previous
dynamics of the disease. This distinction is of fundamental importance for the dynamics5,6.

Seasonality in the environmental reservoir. The models above assume that the environmen-
tal reservoir is constant in time. We can relax this assumption by letting ω = ω(t), as we have
done with the transmission rate, βseas(t). This has the effect of introducing more parameters and
making the model more flexible. Because it allows for the seasonality to be explained—in whole or
in part—by the environmental reservoir, it also has the potential to change the results derived using
the simpler models. To model ω(t), we use the same six-knot periodic B-spline basis as before:

log
ω(t)
ω̄

=
5∑

k=0

ωk sk(t),

The scaling constant ω̄ = 1 yr−1. (Of course, the parameters ωk are estimated entirely indepen-
dently of bk.) Maximum likelihood estimates of all parameters for this seasonal-reservoir model
are presented in Table S-5. In some districts, as judged by AICc, there is sufficient information
in the data to support the additional parameters. In all districts, however, the seasonal signal in
β remains strong. Critically, the predictions of high prevalence of inapparent infection, rapidly-
waning immunity, and low R0 are robust to the inclusion of seasonality in the reservoir: estimated
case fatality 0.004± 0.002; estimated duration of immunity, 9.6± 8.2 wk; estimated R0, 1.5± 0.2.
Moreover, as do the simpler models, this model predicts a small force of infection from the reservoir
relative to the total: 1.3± 0.5% (mean ± SE) of all cases derive from this source of infection under
the seasonal-reservoir model vs. 1.0± 0.4% for the SIRS model and 0.19± 0.06% for the two-path
model.

Environmental-phage model equations. In a theoretical investigation, Jensen et al.7 exam-
ined the hypothesis that build-up of ambient phage can interrupt transmission. We formulated a
model to evaluate this hypothesis against the historical cholera mortality data. The environmental-
phage model is built to extend the SIRS model. The equations are those of Eq. 1 with c = 1 with
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one additional state variable:

dS

dt
= kεRk +

dH

dt
(t) + δ H(t)− (λφ(t) + δ)S

dI

dt
= λφ(t)S − (m+ γ + δ) I

dR1

dt
= γ I − (k ε+ δ)R1

...
dRk
dt

= k εRk−1 − (k ε+ δ)Rk

dΦ
dt

= I − µΦ

Here, Φ represents the effect of lytic vibriophage in the environment. Ambient phage are assumed
to have first-order kinetics, with a source term proportional to the number of infections and an
exponential decay term. The effect of buildup of ambient phage is to reduce the force of infection,
λφ:

λφ(t) =
λ(t)

1 + aΦ(t)

There are two additional parameters and one initial condition to be estimated from the data: the
phage decay constant is µ, the parameter a measures the strength of the environmental phage effect.
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Supplementary Methods

Algorithm: maximum likelihood via iterated filtering

Model input:
process model f(·), measurement model g(·|·), data y1, . . . , yN , times t0, . . . , tN

Algorithmic parameters:
number of particles J , fixed lag L, number of iterations M ;
cooling factor 0 < a < 1, b > 0; initial state vector X(1)

I , initial parameter vector θ(1);
variance-covariance matrices ΣI , Σθ.

Procedure:

1. for m = 1 to M
2. draw XI(t0, j) ∼ normal(X(m)

I , am−1ΣI), j = 1, . . . , J
3. set XF (t0, j) = XI(t0, j)
4. draw θ(t0, j) ∼ normal(θ(m), bam−1Σθ)
5. set θ̄(t0) = θ(m)

6. for n = 1 to N
7. set XP (tn, j) = f(XF (tn−1, j), tn−1, tn, θ(tn−1, j),W )
8. set w(n, j) = g(yn|XP (tn, j), tn, θ(tn−1, j))
9. draw k1, . . . , kJ such that Prob[kj = i] = w(n, i)/

∑
l w(n, l)

10. set XF (tn, j) = XP (tn, kj)
11. set XI(tn, j) = XI(tn−1, kj)
12. draw θ(tn, j) ∼ normal(θ(tn−1, kj), am−1(tn − tn−1)Σθ)
13. set θ̄i(tn) to be the sample mean of {θi(tn−1, kj), j = 1, . . . , J}
14. set Vi(tn) to be the sample variance of {θi(tn, j), j = 1, . . . , J}
15. end for
16. θ

(m+1)
i = θ

(m)
i + Vi(t1)

∑N
n=1 V

−1
i (tn)(θ̄i(tn)− θ̄i(tn−1))

17. set X(m+1)
I to be the sample mean of {XI(tL, j), j = 1, . . . , J}

18. end for

Return:
maximum likelihood estimate for parameters, θ̂ = θ(M+1);
maximum likelihood estimate for initial values, X̂(t0) = X

(M+1)
I ;

maximized log likelihood estimate, logL(θ̂) =
∑

n log(
∑

j w(n, j)/J)

Note:
Here, normal(µ,Σ) denotes a multivariate normal random variable with mean vector µ and
covariance matrix Σ. X(tn) takes values in Rdx , yn takes values in Rdy , θ takes values in
Rdθ and has components {θi, i = 1, . . . , dθ}. The computationally challenging steps (6–15)
correspond to a standard implementation of particle filtering8; many refinements are possible
within the context of this algorithm. The update equation (16) is the main innovation of
Ionides et al.9.
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Supplementary Discussion

Biological basis for short-term immunity. Our results imply that, in the vast bulk of cases,
exposure to the pathogen induces a rapidly-waning protection from reinfection; they also give some
clues as to the likely nature of this protection. Such protection may derive entirely from the host
immune system. It is known that protection is due to the secretory IgA antibody response localized
to the mucosae of the gut10–20. Both laboratory and field studies suggest that, following recovery,
mucosal IgA levels wane on a timescale commensurate with our predictions18,21,22. On the other
hand, it may also be that the high asymptomatic ratio and short-term protection effects derive in
part from a high prevalence of coinfection with lytic bacteriophage (a mechanism distinct from the
putative environmental effect of phage discussed in the preceding paragraph). Many observations
have been made of such coinfection and of its protective effects23–25, but it remains unclear how
commonly phage coinfection is responsible for reducing disease severity in the field. In short, while
plausible biological mechanisms for the effects revealed here exist, further work is needed to fully
elucidate the immunological and ecological consequences of asymptomatic cholera infections.

Public health implications. Many decades of effort have gone into cholera vaccine research.
Though reasonably effective vaccines have been developed, the protection they afford typically
wanes within a short time26. Our results not only confirm the suspicion that this may be the best
that can be hoped for, but suggest that “natural vaccination” is the key to understanding why
cholera outbreaks were historically not more deadly than they were. They suggest too that even
the incomplete and rapidly-waning immunity provided by an inexpensive vaccine could be effective
at controlling outbreaks if applied immediately prior to an outbreak’s (predicted) initiation.

Further public health implications of our findings center on what determines whether an expo-
sure results in contagious infection and/or acquired immunity. Dose-size almost certainly plays a
key role27–31; transmission route may as well28,29. Thus while a relatively small dose of live bacteria
induces a severe case of cholera when the innoculum is buffered, as by food, a large dose is needed
when delivery is via contaminated water27,29,32. Moreover, the fact that recently-shed vibrio33

are hyperinfectious implies that within-household transmission is more likely to result in severe
infection. These facts, together with the relatively small estimated magnitude of the environmental
reservoir effect, suggests the need for experimental quantification of routes of transmission other
than the water-borne.

Comparison with earlier models. The continuous-time mechanistic models presented here
represent a distinct improvement in explanatory power over the discrete-time models that have
been applied before to cholera34,35 and other infectious diseases36,37. This is in part due to the
greater flexibility of the continuous-time models (see Fig. S-3), which can readily include terms for
environmental force of infection, seasonality in one or more transmission rates, etc. Such models can
be fitted because our inference method is simulation based. The models used here, moreover, take
account of measurement error in addition to process noise. Previous approaches34,35 assumed that
all variability in the data was due to process noise. Finally, time discretization itself can introduce
instability into model dynamics38. The appearance of non-mass-action transmission terms in TSIR-
type models may be attributable, at least in part, to the need to tame this instability. This departure
between the discrete-time model and the continuous-time process it is meant to represent may
introduce bias into the estimates obtained using discrete-time models.
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Supplementary Figures
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Figure S-1: The 26 districts for which we fit models to cholera mortality data. Data
from the northern highlands district of Darjeeling were also available, but we were not successful
in fitting the models to these data. This failure is likely due to the fact that, in Darjeeling district,
cholera incidence is generally quite low and, in fact, the disease is entirely absent for months at a
time. Our models are designed for endemic cholera dynamics and thus fail to accommodate the
extremely epidemic dynamics of Darjeeling.
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●

●

Dhaka

Kolkata

Figure S-2: Estimates of the environmental reservoir parameter, ω, for each of the 26
districts, under the SIRS model. Darker color corresponds to higher values of the parameter.
The geographical pattern mirrors the suggestion that the southern regions of Bangladesh are the
native habitat of classical cholera39. The pattern is similar under the two-path model. Numerical
values of estimates of this and the other model parameters are provided in the Supplementary
Tables.
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Figure S-3: Comparison of discrete- and continuous-time model predictions. Distributions
of actual monthly deaths from the Dacca district (1891–1940, black) and simulated monthly cholera
deaths from the continuous-time SIRS model with seasonal reservoir (blue) and the discrete-time
TSIRS model of Koelle & Pascual34 (red). The TSIRS model overpredicts both large epidemics
and fadeouts. With fewer parameters, the continuous-time SIRS model is nevertheless considerably
more flexible: the distribution it predicts is more compact and it captures some of the bimodality
apparent in the data. Model parameters used correspond to the Dacca district; for each model, 200
simulated time series were used.
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Supplementary Tables

Table S-1: Model comparison for the data from Dacca, (nowadays spelled Dhaka) the only
district for which comparable analyses have been performed34,40. We compared models using log
likelihood and second-order Akaike information criterion (AICc). AICc is defined as −2 logL +
2 k + 2 (k + 1)/(n − k − 1), where L is the likelihood, k is the number of fitted parameters and n
is the number of observations. Two non-mechanistic models are used to establish a baseline for
comparison. The first (seasonal mean) simply uses the monthly mean and variance in mortality.
The second is a seasonal autoregressive moving-average (SARMA) model. While these models give
some indication as to how predictable the data series are, they are not easy to interpret since they
lack all description of mechanism. The semi-parametric method of Koelle & Pascual34 does not lend
itself to easy determination of the effective number of parameters; we report a lower bound on the
AICc for this model. When the SIRS model is constrained to a 4 yr mean immunity, comparable to
the estimate of Koelle & Pascual34, the log likelihood (−3843.3) is also comparable. The increase
in log likelihood obtained from removing the constraint 1/ε = 4 yr is highly statistically signficant
(p < 0.001, likelihood ratio test, df = 1); likewise the two-path model affords a significantly better
fit (p < 0.001, likelihood ratio test, df = 3, see Supplementary Methods) than the SIRS model.
Parameter estimates for all districts are in Tables S-3 through S-6.

model log likelihood AICc

SIRS with seasonal reservoir −3763.8 7573.4
two-path −3784.7 7610.8
environmental-phage −3787.9 7617.2
SIRS −3793.4 7621.9
SARMA((2,2)×(1,1)) −3804.5 7625.2
Koelle & Pascual34 −3840.1 > 7680.1
seasonal mean −3989.1 8028.2
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Table S-2: Model comparison for all districts. The quantities shown are ∆AICc, i.e., the
difference in AICc between a given model and the best model (smallest AICc) for that district
(denoted by ∗).

SIRS two-path seasonal-reservoir environmental-phage

Bakergang 7.4 ∗ 15.4 16.5
Bankura ∗ 2.0 11.5 8.8
Birbhum 1.2 16.4 ∗ 8.4
Bogra 17.0 ∗ 24.7 40.9
Burdwan 50.6 63.3 ∗ 56.1
Calcutta 6.2 ∗ 8.9 13.9
Chittagong 19.7 13.1 23.7 ∗
Dacca 48.4 37.4 ∗ 43.8
Dinajpur 5.7 11.4 17.7 ∗
Faridpur 49.8 52.6 ∗ 55.5
Hooghly 40.6 53.7 ∗ 47.5
Howrath 9.8 3.0 ∗ 17.2
Jaipaguri 7.1 7.3 ∗ 7.0
Jessore 18.2 25.4 ∗ 24.9
Khulna 9.6 11.4 ∗ 5.8
Malda 14.5 14.9 30.5 ∗
Midnapur ∗ 1.7 4.6 9.4
Mohrshidabad ∗ 14.1 2.1 6.5
Mymensingh 22.7 8.8 37.7 ∗
Nadia 4.1 10.4 ∗ 10.1
Noakhali 4.1 ∗ 5.0 11.0
Pabna 2.5 ∗ 12.4 10.5
Rangpur 3.3 ∗ 7.8 6.7
Rashahi 16.2 32.5 ∗ 24.1
Tippera 29.9 34.0 41.3 ∗
24 Parganas 39.2 51.0 ∗ 46.4
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Table S-3: Maximum likelihood estimates for the SIRS model. The units of γ, m, ε, ω, and
βtrend are yr−1; the other quantities are dimensionless.

logL AICc r2 R0 γ m ε logω

Bakergang −3663.2 7361.4 0.855 1.35 11.2 0.028 36.8 −5.0
Bankura −3039.0 6113.0 0.568 1.45 7.3 0.019 3.8 −3.5
Birbhum −3082.4 6199.9 0.492 1.52 9.0 0.066 13.4 −4.9
Bogra −2849.2 5733.4 0.545 1.97 14.1 0.044 2.3 −10.2
Burdwan −3412.4 6859.9 0.584 1.48 5.0 0.043 6.2 −4.0
Calcutta −3041.7 6118.5 0.759 1.22 16.0 0.028 51.6 −3.5
Chittagong −3255.0 6545.1 0.709 1.53 4.9 0.043 4.1 −5.9
Dacca −3793.4 7621.9 0.849 1.28 17.3 0.057 9.8 −4.8
Dinajpur −2946.2 5927.4 0.501 1.64 12.3 0.021 3.5 −5.6
Faridpur −3661.8 7358.7 0.785 1.31 19.3 0.066 6.2 −5.0
Hooghly −3248.6 6532.2 0.575 1.09 7.1 0.019 10.1 −2.3
Howrath −3372.1 6779.2 0.769 1.33 7.7 0.041 6.4 −3.7
Jaipaguri −2391.1 4817.3 0.592 1.41 22.9 0.104 3.4 −9.4
Jessore −3500.9 7036.9 0.750 1.57 15.8 0.036 12.0 −5.2
Khulna −3508.8 7052.7 0.722 1.40 8.0 0.024 32.3 −4.3
Malda −2903.4 5841.8 0.589 1.73 25.5 0.090 3.1 −10.9
Midnapur −3881.5 7798.1 0.670 1.32 5.4 0.014 21.7 −2.3
Mohrshidabad −3400.7 6836.5 0.624 1.69 11.3 0.036 5.9 −4.8
Mymensingh −3989.7 8014.4 0.803 1.36 17.3 0.069 9.2 −8.3
Nadia −3403.3 6841.6 0.732 1.63 12.2 0.032 27.4 −5.4
Noakhali −3477.0 6989.0 0.695 1.80 6.0 0.032 2.6 −5.0
Pabna −3288.3 6611.6 0.694 1.48 23.0 0.102 3.7 −9.5
Rangpur −3269.0 6573.1 0.633 1.52 14.7 0.070 1.9 −7.4
Rashahi −3301.9 6638.8 0.694 1.48 16.6 0.056 5.3 −5.8
Tippera −3647.8 7330.6 0.763 1.50 11.4 0.017 23.9 −5.4
24 Parganas −3777.8 7590.7 0.844 1.35 6.3 0.034 15.4 −3.8

βtrend ×103 b0 b1 b2 b3 b4 b5 σ τ

Bakergang −5.1 0.1 7.1 −8.6 1.9 2.1 5.3 2.6 0.33
Bankura −3.2 3.0 3.1 0.7 4.9 −2.6 2.6 3.7 0.48
Birbhum −5.1 1.7 3.8 0.6 4.4 0.4 4.4 4.0 0.53
Bogra −6.6 2.3 4.7 1.9 3.4 3.9 3.3 4.9 0.66
Burdwan −8.8 1.7 4.7 −6.0 1.6 1.6 3.0 3.5 0.38
Calcutta −4.7 3.0 3.8 2.1 2.2 3.3 3.1 2.1 0.23
Chittagong −10.7 −0.8 4.8 −0.5 1.0 0.7 4.6 3.0 0.42
Dacca −5.0 1.2 6.2 −3.4 3.9 3.2 4.3 3.2 0.25
Dinajpur −5.1 1.9 4.2 2.3 1.8 3.6 3.6 4.3 0.63
Faridpur −3.0 1.4 6.5 −3.6 4.3 3.0 4.5 3.4 0.39
Hooghly −9.0 0.5 5.8 −6.6 1.1 2.2 3.3 3.0 0.35
Howrath −4.1 2.3 3.4 −0.7 1.9 2.5 3.1 2.3 0.20
Jaipaguri −1.8 3.1 4.3 3.2 3.3 3.6 3.3 4.0 0.69
Jessore −3.5 1.5 5.6 −1.2 3.4 3.4 4.6 4.1 0.39
Khulna −7.0 −1.1 6.7 −6.5 1.4 2.8 4.6 2.6 0.36
Malda −2.3 2.8 4.8 3.0 3.6 4.3 4.1 5.2 0.62
Midnapur −10.0 2.0 2.8 −2.9 2.0 1.4 3.4 2.9 0.28
Mohrshidabad −4.9 1.9 4.6 0.2 3.8 3.0 3.5 4.4 0.41
Mymensingh −2.6 1.7 4.9 0.9 3.0 3.7 3.9 3.0 0.28
Nadia −7.3 1.2 5.9 −2.5 2.0 4.2 3.7 4.1 0.47
Noakhali −6.8 −1.4 7.0 −6.7 3.3 1.6 5.0 3.9 0.39
Pabna −1.9 2.1 5.7 0.6 4.1 4.0 3.8 4.0 0.51
Rangpur −6.6 1.2 5.3 0.8 3.4 3.5 3.6 4.1 0.62
Rashahi −5.7 1.6 5.3 0.7 3.2 3.5 4.1 4.1 0.48
Tippera −4.7 1.5 4.8 −2.5 3.3 2.8 4.4 3.1 0.40
24 Parganas −6.0 0.8 4.5 −6.7 1.8 1.3 4.6 2.5 0.16

S-12

doi: 10.1038/nature07084                                                                                                                                                  SUPPLEMENTARY INFORMATION

www.nature.com/nature 12



Table S-4: Maximum likelihood estimates for the two-path model. The units of γ, m, ε,
ω, and βtrend are yr−1; the other quantities are dimensionless

logL AICc r2 R0 γ m ρ ε logω c

Bakergang −3656.3 7354.0 0.857 1.38 7.1 2.740 8.5 0.5 −4.5 0.0088
Bankura −3036.8 6115.0 0.556 1.41 11.0 2.494 4.5 0.3 −4.6 0.0107
Birbhum −3086.8 6215.0 0.492 1.61 1.3 6.417 5.3 0.5 −4.4 0.0079
Bogra −2837.5 5716.4 0.522 2.30 21.6 0.240 2.6 0.4 −10.9 0.2400
Burdwan −3415.6 6872.7 0.580 1.44 1.8 4.135 4.3 1.0 −3.5 0.0079
Calcutta −3035.4 6112.3 0.762 1.27 11.3 4.662 5.6 0.7 −4.3 0.0104
Chittagong −3248.5 6538.5 0.713 1.43 8.4 3.627 4.7 0.6 −5.5 0.0113
Dacca −3784.7 7610.8 0.852 1.29 8.0 9.238 7.1 0.7 −4.5 0.0051
Dinajpur −2945.8 5933.1 0.508 1.87 4.3 1.304 3.0 0.7 −4.6 0.0057
Faridpur −3660.0 7361.5 0.783 1.34 10.7 8.661 7.1 0.7 −5.0 0.0056
Hooghly −3251.9 6545.3 0.573 1.11 3.2 4.406 5.1 0.8 −2.3 0.0040
Howrath −3365.5 6772.4 0.771 1.32 11.2 5.262 5.7 0.6 −4.4 0.0114
Jaipaguri −2388.1 4817.6 0.585 1.47 23.9 0.155 17.0 3.3 −9.8 0.4598
Jessore −3501.3 7044.1 0.750 1.63 9.6 4.197 9.2 1.7 −4.6 0.0053
Khulna −3506.5 7054.5 0.720 1.44 4.2 3.941 7.2 0.7 −4.2 0.0053
Malda −2900.3 5842.1 0.592 1.63 29.3 0.134 22.9 2.8 −10.6 0.4809
Midnapur −3879.2 7799.8 0.674 1.31 10.9 3.737 5.9 0.5 −3.7 0.0099
Mohrshidabad −3404.6 6850.6 0.623 1.82 6.0 3.649 3.3 0.4 −4.3 0.0079
Mymensingh −3979.5 8000.5 0.804 1.44 13.6 3.831 2.5 0.4 −7.9 0.0279
Nadia −3403.3 6848.0 0.733 1.66 6.7 5.164 9.2 0.9 −5.3 0.0054
Noakhali −3471.7 6984.9 0.691 1.71 9.5 3.103 4.4 0.5 −5.3 0.0108
Pabna −3283.8 6609.0 0.695 1.47 12.3 13.756 4.4 0.8 −7.5 0.0059
Rangpur −3264.2 6569.8 0.631 1.55 17.3 0.134 14.0 1.4 −7.8 0.3894
Rashahi −3306.8 6655.1 0.691 1.52 9.0 4.285 5.8 0.8 −5.1 0.0079
Tippera −3646.6 7334.7 0.763 1.53 7.5 3.267 5.2 3.2 −5.2 0.0056
24 Parganas −3780.6 7602.6 0.844 1.38 2.8 3.889 4.7 0.8 −3.7 0.0079

βtrend ×103 b0 b1 b2 b3 b4 b5 σ τ

Bakergang −4.8 4.0 13.2 −10.7 2.8 6.8 10.2 308.3 0.31
Bankura −4.5 7.9 7.7 6.9 8.4 6.1 7.6 334.8 0.47
Birbhum −5.2 6.1 9.1 4.5 9.6 4.5 9.4 539.7 0.53
Bogra −7.4 4.5 6.5 4.3 5.4 5.7 5.5 27.7 0.65
Burdwan −9.7 6.3 9.7 0.1 8.1 5.6 8.5 448.6 0.39
Calcutta −5.7 7.6 8.3 6.7 6.9 7.9 7.6 201.9 0.23
Chittagong −6.8 6.0 8.9 6.2 7.5 6.2 8.8 288.7 0.44
Dacca −6.8 6.5 11.4 2.1 9.0 8.6 9.5 639.6 0.23
Dinajpur −10.5 4.2 10.7 4.2 4.4 8.9 8.7 694.1 0.63
Faridpur −3.6 6.7 11.4 2.3 9.5 8.3 9.6 594.9 0.38
Hooghly −9.4 6.7 10.7 1.2 6.7 7.9 8.5 757.2 0.35
Howrath −2.5 7.6 8.0 6.7 7.4 7.6 7.9 202.3 0.20
Jaipaguri −1.5 4.0 5.1 4.3 4.0 4.5 4.1 9.5 0.68
Jessore −4.5 6.3 11.3 2.6 8.5 8.5 9.9 799.7 0.38
Khulna −8.0 4.5 11.6 −0.5 6.9 8.0 9.7 491.0 0.36
Malda −2.1 3.7 5.5 4.0 4.3 5.1 4.8 10.6 0.63
Midnapur −5.0 7.8 7.3 7.2 7.5 7.3 8.1 275.8 0.29
Mohrshidabad −5.9 6.3 9.9 3.8 8.8 7.7 8.5 585.2 0.42
Mymensingh −5.8 5.4 8.5 4.6 6.6 7.4 7.4 114.2 0.28
Nadia −7.6 6.3 11.3 2.0 7.3 9.3 8.9 773.1 0.46
Noakhali −3.5 5.9 9.3 5.5 8.2 6.9 9.2 383.3 0.38
Pabna −2.2 7.6 10.6 6.4 9.2 9.2 9.0 713.7 0.50
Rangpur −5.1 2.9 5.9 2.6 4.4 4.7 4.5 11.1 0.61
Rashahi −8.6 5.3 10.8 3.7 8.1 8.0 9.2 524.0 0.48
Tippera −5.2 6.7 10.3 1.2 8.4 8.0 9.5 567.3 0.40
24 Parganas −5.7 5.7 9.3 −0.5 7.0 6.2 9.5 329.5 0.16
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Table S-5: Maximum likelihood estimates for the seasonal-reservoir model. The units of
γ, m, ε, and βtrend are yr−1; the other quantities are dimensionless.

logL AICc r2 R0 γ m ε b0 b1 b2 b3 b4 b5
Bakergang −3661.8 7369.4 0.855 1.35 11.2 0.029 36.7 0.1 7.1 −8.7 1.9 2.2 5.2
Bankura −3039.3 6124.5 0.570 1.40 7.4 0.019 3.9 3.0 3.0 0.6 4.9 −2.6 2.7
Birbhum −3076.4 6198.6 0.499 1.50 9.0 0.068 13.2 1.6 3.7 0.6 4.3 0.5 4.4
Bogra −2847.7 5741.1 0.540 1.90 14.1 0.042 2.1 2.2 4.7 1.6 3.5 3.9 3.3
Burdwan −3381.8 6809.3 0.610 1.50 5.3 0.046 6.6 1.7 4.8 −6.0 1.5 1.8 3.3
Calcutta −3037.7 6121.2 0.761 1.20 16.1 0.030 51.9 3.0 3.8 2.1 2.2 3.3 3.0
Chittagong −3251.6 6549.0 0.713 1.52 5.3 0.046 3.7 −0.5 4.9 −0.5 0.8 1.0 4.5
Dacca −3763.8 7573.4 0.858 1.22 18.0 0.064 10.6 1.2 6.2 −3.5 3.7 3.4 4.2
Dinajpur −2946.8 5939.4 0.499 1.62 12.3 0.021 3.2 1.8 4.2 2.3 1.8 3.8 3.5
Faridpur −3631.6 7309.0 0.800 1.26 20.6 0.071 6.6 1.4 6.5 −3.6 4.3 3.2 4.5
Hooghly −3222.9 6491.6 0.604 1.05 7.6 0.022 10.0 0.4 5.8 −6.7 1.0 2.4 3.3
Howrath −3361.8 6769.4 0.773 1.30 7.9 0.043 6.6 2.3 3.4 −0.7 2.0 2.5 3.1
Jaipaguri −2382.3 4810.3 0.599 1.39 21.9 0.109 3.2 3.1 4.3 3.2 3.1 3.5 3.1
Jessore −3486.5 7018.7 0.760 1.54 16.1 0.037 12.8 1.5 5.6 −1.3 3.3 3.5 4.5
Khulna −3498.7 7043.1 0.726 1.38 8.1 0.024 33.0 −1.1 6.7 −6.8 1.4 2.9 4.5
Malda −2906.0 5857.8 0.587 1.68 25.5 0.090 3.2 2.8 4.7 3.0 3.5 4.3 4.0
Midnapur −3878.5 7802.7 0.675 1.31 5.4 0.014 22.1 2.0 2.7 −2.9 1.9 1.5 3.4
Mohrshidabad −3396.4 6838.5 0.627 1.68 11.5 0.037 5.7 1.9 4.5 0.3 3.6 3.1 3.5
Mymensingh −3991.8 8029.4 0.805 1.34 17.3 0.068 9.0 1.7 4.8 0.8 3.0 3.7 3.9
Nadia −3395.9 6837.6 0.739 1.60 12.3 0.033 27.3 1.2 5.9 −2.6 2.0 4.2 3.6
Noakhali −3472.1 6989.9 0.698 1.81 6.0 0.032 2.5 −1.4 6.9 −6.7 3.3 1.6 5.0
Pabna −3287.9 6621.5 0.690 1.45 23.0 0.103 3.8 2.2 5.6 0.6 4.0 4.0 3.7
Rangpur −3265.9 6577.6 0.633 1.63 14.6 0.065 1.5 1.4 5.2 1.1 3.4 3.7 3.5
Rashahi −3288.4 6622.6 0.701 1.42 17.1 0.059 5.4 1.5 5.3 0.6 3.1 3.5 4.1
Tippera −3648.1 7341.9 0.765 1.53 11.4 0.016 24.0 1.6 4.9 −2.6 3.3 2.8 4.4
24 Parganas −3752.9 7551.5 0.853 1.29 6.8 0.037 15.5 0.8 4.5 −6.8 1.8 1.5 4.6

βtrend ×103 σ τ ω0 ω1 ω2 ω3 ω4 ω5

Bakergang −4.6 2.5 0.32 −4.5 −4.9 −4.8 −4.7 −5.5 −4.4
Bankura −5.2 3.8 0.47 −3.7 −3.2 −3.9 −3.8 −3.3 −4.0
Birbhum −6.1 4.1 0.53 −4.4 −4.3 −4.9 −5.7 −5.8 −4.7
Bogra −7.1 4.9 0.68 −9.7 −9.8 −10.2 −12.9 −10.2 −10.8
Burdwan −10.2 3.6 0.35 −3.9 −3.7 −3.5 −2.5 −4.9 −5.4
Calcutta −4.9 2.2 0.22 −3.6 −3.3 −3.1 −3.8 −4.0 −3.1
Chittagong −11.8 3.0 0.41 −5.2 −5.0 −5.3 −5.8 −6.6 −6.1
Dacca −4.8 3.1 0.22 −3.4 −4.0 −4.1 −4.1 −6.6 −4.7
Dinajpur −7.2 4.4 0.69 −5.2 −6.1 −5.3 −5.9 −6.4 −5.4
Faridpur −2.7 3.4 0.35 −4.0 −4.5 −3.7 −4.4 −7.1 −4.0
Hooghly −9.3 3.1 0.35 −1.9 −1.8 −1.8 −1.7 −3.8 −2.6
Howrath −4.0 2.3 0.19 −3.6 −2.6 −2.6 −3.6 −3.9 −4.4
Jaipaguri −2.5 4.2 0.74 −8.8 −9.3 −10.1 −10.7 −11.2 −7.8
Jessore −4.4 4.2 0.38 −4.7 −4.9 −4.0 −4.5 −6.6 −5.2
Khulna −7.9 2.6 0.35 −3.7 −4.0 −2.9 −3.6 −5.5 −4.1
Malda −0.8 4.9 0.65 −11.0 −10.9 −11.0 −11.0 −11.0 −11.0
Midnapur −11.3 2.9 0.27 −1.8 −3.2 −2.2 −2.3 −3.1 −2.3
Mohrshidabad −5.7 4.4 0.40 −4.5 −5.0 −5.0 −4.0 −5.8 −5.0
Mymensingh −2.3 3.0 0.27 −8.3 −8.3 −8.3 −8.4 −8.3 −8.3
Nadia −8.6 4.2 0.47 −5.1 −5.0 −4.9 −4.7 −6.8 −5.8
Noakhali −9.7 3.9 0.39 −4.3 −4.1 −4.7 −4.9 −5.9 −4.4
Pabna −2.6 3.9 0.52 −8.9 −9.2 −9.5 −9.8 −9.4 −9.9
Rangpur −7.7 4.6 0.69 −6.7 −7.5 −7.0 −8.0 −8.5 −7.9
Rashahi −6.5 4.1 0.48 −5.3 −5.4 −5.0 −5.1 −7.0 −6.6
Tippera −5.1 3.2 0.40 −5.2 −5.4 −5.0 −5.1 −5.8 −5.1
24 Parganas −5.1 2.5 0.15 −2.9 −3.4 −3.2 −2.6 −5.0 −4.7
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Table S-6: Maximum likelihood estimates for the environmental-phage model. The units
of γ, m, ε, ω, βtrend, a, and µ are yr−1; the other quantities are dimensionless.

logL AICc r2 R0 log a µ γ m ε

Bakergang −3664.5 7370.4 0.855 1.41 −17.3 0.32 11.2 0.028 39.8
Bankura −3040.2 6121.8 0.570 1.40 −17.0 0.37 7.3 0.019 4.0
Birbhum −3082.8 6207.0 0.495 1.53 −15.5 0.35 9.1 0.070 13.9
Bogra −2857.9 5757.3 0.536 2.05 −13.1 3.66 14.1 0.042 1.9
Burdwan −3412.0 6865.5 0.584 1.43 −15.5 2.21 5.1 0.045 6.4
Calcutta −3042.3 6126.2 0.760 1.23 −16.7 0.36 16.2 0.030 52.4
Chittagong −3241.9 6525.3 0.714 2.02 −9.5 8.81 4.9 0.046 4.1
Dacca −3787.9 7617.2 0.851 1.28 −17.5 1.11 17.3 0.057 10.5
Dinajpur −2940.1 5921.7 0.494 2.00 −8.8 23.94 11.7 0.024 3.7
Faridpur −3661.5 7364.4 0.786 1.31 −16.9 0.50 19.0 0.066 5.9
Hooghly −3248.8 6539.1 0.575 1.11 −16.5 0.10 7.1 0.021 9.1
Howrath −3372.6 6786.6 0.769 1.36 −18.5 0.18 7.7 0.039 6.6
Jaipaguri −2387.9 4817.3 0.588 1.66 −12.3 0.14 21.9 0.112 3.8
Jessore −3501.1 7043.6 0.748 1.57 −17.1 1.30 15.6 0.035 12.7
Khulna −3503.7 7048.9 0.723 1.39 −17.5 4.07 8.0 0.023 33.5
Malda −2892.9 5827.3 0.578 1.86 −8.5 8.32 25.5 0.134 3.7
Midnapur −3883.0 7807.5 0.671 1.34 −16.9 0.75 5.4 0.014 21.5
Mohrshidabad −3400.7 6842.9 0.626 1.71 −16.4 0.68 11.3 0.037 5.4
Mymensingh −3975.1 7991.7 0.812 1.64 −10.4 7.17 16.6 0.102 13.2
Nadia −3403.1 6847.7 0.734 1.70 −14.6 1.79 12.2 0.033 27.0
Noakhali −3477.2 6995.9 0.694 1.84 −17.2 0.47 5.9 0.031 2.6
Pabna −3289.0 6619.5 0.690 1.48 −18.1 0.06 23.0 0.096 3.8
Rangpur −3267.5 6576.5 0.629 1.79 −13.5 0.35 14.2 0.067 1.5
Rashahi −3302.6 6646.7 0.694 1.47 −16.1 0.45 16.6 0.059 5.3
Tippera −3629.6 7300.7 0.771 2.02 −11.1 6.95 11.0 0.022 26.8
24 Parganas −3778.2 7597.9 0.844 1.38 −17.4 0.47 6.3 0.032 18.6

logω βtrend ×103 b0 b1 b2 b3 b4 b5 σ τ

Bakergang −4.9 −3.5 0.1 7.2 −9.0 2.2 2.1 5.3 2.6 0.32
Bankura −3.5 −5.9 3.0 3.1 0.6 4.9 −2.6 2.6 3.9 0.48
Birbhum −5.0 −4.8 1.8 3.7 0.7 4.3 0.4 4.4 4.1 0.53
Bogra −11.0 −8.0 2.3 4.9 1.7 3.5 4.0 3.4 5.4 0.67
Burdwan −3.9 −9.5 1.6 4.8 −6.0 1.3 1.5 3.1 3.4 0.38
Calcutta −3.4 −7.0 3.1 3.8 2.2 2.2 3.3 3.1 2.3 0.22
Chittagong −5.7 −9.2 −0.6 5.4 −0.6 1.4 0.9 4.8 4.1 0.40
Dacca −4.6 −7.3 1.3 6.1 −3.3 3.7 3.3 4.3 3.3 0.23
Dinajpur −5.7 −6.9 2.0 4.4 2.5 1.7 3.8 3.8 5.4 0.68
Faridpur −4.9 −3.4 1.4 6.4 −3.6 4.3 3.0 4.4 3.4 0.38
Hooghly −2.2 −7.7 0.6 5.9 −6.8 0.8 2.2 3.3 3.2 0.35
Howrath −3.6 −4.0 2.3 3.4 −0.4 1.9 2.4 3.1 2.4 0.20
Jaipaguri −9.8 −2.3 3.3 4.5 3.4 3.3 3.6 3.4 5.0 0.74
Jessore −5.2 −4.3 1.5 5.6 −1.2 3.3 3.4 4.5 4.1 0.39
Khulna −4.2 −8.5 −1.1 6.8 −6.9 1.4 2.8 4.5 2.5 0.35
Malda −10.9 −1.7 2.8 4.8 3.1 3.7 4.3 4.3 5.6 0.65
Midnapur −2.2 −11.1 2.2 2.6 −2.8 1.9 1.4 3.4 3.1 0.28
Mohrshidabad −4.8 −5.4 2.0 4.5 0.3 3.7 3.1 3.5 4.5 0.40
Mymensingh −8.3 −4.4 2.0 5.0 1.1 3.1 3.8 4.1 3.7 0.25
Nadia −5.5 −8.4 1.2 6.0 −2.6 2.3 4.1 3.7 4.4 0.47
Noakhali −5.0 −8.3 −1.3 7.0 −6.8 3.3 1.6 5.1 3.9 0.39
Pabna −9.5 −2.9 2.1 5.7 0.5 4.1 4.0 3.8 4.0 0.52
Rangpur −7.4 −7.5 1.5 5.3 1.1 3.4 3.8 3.6 4.9 0.69
Rashahi −5.8 −6.2 1.6 5.2 0.6 3.2 3.5 4.1 4.1 0.48
Tippera −5.3 −1.5 2.0 5.3 −2.4 3.5 3.0 4.5 4.5 0.37
24 Parganas −3.8 −5.0 0.8 4.6 −7.1 1.8 1.3 4.6 2.5 0.16
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