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abstract: Alternative explanations for disease and other population
cycles typically include extrinsic environmental drivers, such as cli-
mate variability, and intrinsic nonlinear dynamics resulting from
feedbacks within the system, such as species interactions and density
dependence. Because these different factors can interact in nonlinear
systems and can give rise to oscillations whose frequencies differ
from those of extrinsic drivers, it is difficult to identify their respective
contributions from temporal population patterns. In the case of dis-
ease, immunity is an important intrinsic factor. However, for many
diseases, such as cholera, for which immunity is temporary, the du-
ration and decay pattern of immunity is not well known. We present
a nonlinear time series model with two related objectives: the re-
construction of immunity patterns from data on cases and population
sizes and the identification of the respective roles of extrinsic and
intrinsic factors in the dynamics. Extrinsic factors here include both
seasonality and long-term changes or interannual variability in forc-
ing. Results with simulated data show that this semiparametric
method successfully recovers the decay of immunity and identifies
the origin of interannual variability. An application to historical chol-
era data indicates that temporary immunity can be long-lasting and
decays in approximately 9 yr. Extrinsic forcing of transmissibility is
identified to have a strong seasonal component along with a long-
term decrease. Furthermore, noise appears to sustain the multiple
frequencies in the long-term dynamics. Similar semiparametric mod-
els should apply to population data other than for disease.
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Alternative explanations for population fluctuations un-
avoidably invoke the well-known and often quoted debate
of the 1950s and 1960s between Nicholson and Smith,
who stressed the importance of density dependence, and
Andrewartha and Birch, who proposed density-indepen-
dent factors as dominant (Davidson and Andrewartha
1948; Andrewartha and Birch 1954; Nicholson 1954). This
debate has an interesting parallel in an even earlier dispute
on explanations for disease patterns, with contagionists
and localists emphasizing, respectively, for cholera the role
of disease transmission versus that of the environment and
geography (Pollitzer 1959). Well beyond this simple di-
chotomy, the recent ecological literature recognizes the
complex interplay of intrinsic dynamics with extrinsic
drivers in nonlinear systems (e.g., Sinclair 1989; Zimmer
1999; Pascual 2001; Rodó et al. 2002). One central problem
has been how to identify the contributions of these dif-
ferent components from the irregular temporal patterns
of population time series.

Patterns of immunity are critical to the intrinsic dy-
namics of disease because past infection levels determine
the current number of susceptible individuals and hence
future infection levels. Extrinsic factors, such as variability
in climate or health policy changes, can also impact trans-
mission rates and therefore the pathogen’s rate of spread
as well as its overall burden in a population. However, the
identification and relative importance of extrinsic and in-
trinsic factors for many diseases remain problematic and
even controversial as demonstrated by the current dis-
cussions of the role of environmental, particularly climatic,
variables on the dynamics of infectious diseases (Hay et
al. 2002; Patz et al. 2002; Rogers et al. 2002). This con-
troversy is evident in a recent review of malaria in which
Rogers and colleagues, considering the origin of interan-
nual cycles, write, “Longer-term weather cycles such as
ENSO have been invoked recently to ‘explain’ outbreaks
of malaria and other diseases. … None of these analyses
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allows an alternative explanation involving intrinsic cycles”
(Rogers et al. 2002, p. 714).

There are two main difficulties in addressing these al-
ternative explanations. First, many diseases confer only
temporary immunity as opposed to the permanent pat-
terns of measles and other childhood diseases, and the
duration of immunity as well as the way in which it decays
over time are not well known. Temporary immunity is
known to be capable, however, of generating interannual
cycles in disease models (Cooke et al. 1977; Hethcote et
al. 1989; Girvan et al. 2002). Second, statistical approaches
are needed that consider both intrinsic and extrinsic fac-
tors in the context of the nonlinear dynamics of disease.
One such time series approach was applied recently to
cholera (Pascual et al. 2000) and was developed as an
extension of the nonlinear time series approaches of Ellner
and Turchin (1995). This approach is, however, completely
phenomenological and relies on lagged disease levels as
surrogates for unknown variables in the system. The prob-
lem remains of considering a more mechanistic approach
that allows for specific patterns of immunity. A further
limitation of the approach is that only extrinsic factors
that are stationary can be considered, such as seasonality
and interannual fluctuations, whose mean does not vary
over time. We introduce here a nonlinear time series model
for disease dynamics with two related applications: the
estimation of the duration and decay pattern of immunity
and the question of whether disease dynamics are gen-
erated intrinsically, through immunity patterns, and/or ex-
trinsically, through driven changes in the transmission rate.
These changes include long-term trends in addition to
seasonality and interannual cycles.

Many theoretical studies have shown that periodic forc-
ing can drive populations and disease models into com-
plicated responses whose characteristic frequencies differ
from those present in the forcing (e.g., Schwartz and Smith
1983; Schwartz 1992). Long-term trends in birthrates or
vaccination can also trigger qualitative changes in the at-
tractors and in the synchronicity patterns of disease (Ro-
hani et al. 1999; Earn et al. 2000). From studies on systems
such as the Dungeness crab (Higgins et al. 1997) and child-
hood diseases (Rohani et al. 2002), we also know that noise
can interact with nonlinear feedbacks to generate surpris-
ing patterns that are qualitatively different from those pro-
duced by the deterministic skeleton alone. In these studies,
the extrinsic factors are usually limited to noise and/or
seasonality, while the intrinsic factors are the backbone of
the mathematical formulation of the model (Higgins et al.
1997; Rohani et al. 2002). One notable exception by Solow
uses a semiparametric approach that allows for extrinsic
changes other than seasonality and noise in a fish stock–
recruitment model (A. Solow, personal communication).

We rely here on a similar semiparametric approach to

develop a time series model for diseases with temporary
immunity and unspecified variation in the transmission
rate. Nonlinear time series models of this sort allow us to
combine mechanistic representations of the processes we
know with phenomenological representations of unknown
processes (Ellner et al. 1998). To our knowledge, this is
the first attempt at using a statistical time series approach
to understand retrospectively fluctuations in disease cycles
as the result of both intrinsic and extrinsic factors, with
the latter not limited to noise and seasonality. We illustrate
the approach with an application to historical cholera data
for Dhaka in former Bengal, the homeland of the disease,
at the beginning of the twentieth century. Rainfall data for
Dhaka and its dominant frequencies are also presented to
further motivate the analysis.

Cholera is an ideal candidate for the application of our
model for several reasons. First, temporary immunity is
known to occur, but the duration of immunity and the
form in which it decays are unknown, and estimates vary
widely (Woodward 1971; Levine et al. 1981; Glass et al.
1982; Clemens et al. 1991; Longini et al. 2002). Second,
there is considerable interest in the role played by envi-
ronmental, primarily climatic, factors in driving the disease
(Colwell 1996; Pascual et al. 2000; Rodó et al. 2002). This
interest stems in large part from the growing recognition
in the past decades that the causative agent of cholera, the
bacterium Vibrio cholerae, inhabits aquatic environments
such as brackish waters and estuaries. Environmental fac-
tors influencing the survival and growth of the bacterium
in its environmental reservoir, such as temperature and
salinity, have the potential to affect disease transmission.
In fact, the disease is known to have a strong seasonal
component attributed to temperature and monsoonal wa-
ter level fluctuations because the bacterium V. cholerae is
transmitted through fecal-oral contamination (Pascual et
al. 2002). Furthermore, at the interannual timescales, there
is evidence for a role of the El Niño Southern Oscillation
(ENSO) in driving the variability of cholera in recent de-
cades in Bangladesh. Interestingly, for Dhaka, this role
appears to have intensified in recent times, with weak to
undetectable effects for the historical period considered
here (Rodó et al. 2002). This observation leaves the in-
terannual variation of the historical period essentially un-
explained. Finally, the likelihood of long-term decreases
in transmissibility from 1892 to 1940 is high, implying
extrinsic forcing of disease dynamics and the resulting
nonstationarity of parameters.

Our analysis provides evidence for immunity in cholera
that lasts several years. Results also show a long-term trend
in the transmission rate with time but no clear evidence
for interannual forcing of this parameter. These findings
are discussed in the context of the epidemiological evi-
dence for temporary immunity in cholera and in the con-
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text of the recent proposal that the link between ENSO
and cholera has intensified from historical to recent times
(Rodó et al. 2002). Simulations of the fitted model with
and without noise reveal an interesting interaction between
the noise and the extrinsic feedbacks in the system. Noise
appears essential to sustain the interannual cycles of the
disease. We discuss the applicability of similar semipara-
metric approaches to differentiate between extrinsic forc-
ing and intrinsic dynamics in interannual population pat-
terns other than those of infectious diseases.

Methods

To isolate the relative contributions of intrinsic population
dynamics from extrinsic forcing, we rely on a simple ep-
idemic model that allows us to formulate both of these
factors into a single difference equation. This transmission
equation allows for temporary immunity as an intrinsic
biological mechanism to be the cause of interannual var-
iability. It also allows for such interannual variability to
be caused by extrinsic changes in pathogen transmissibility.
The transmission equation is a difference equation of the
form

g

StaI p b I � , (1)t�1 t t t( )Nt

where I is the number of infected individuals, S is the
number of susceptible individuals, and N is the population
size. The time step corresponds to the average time an
individual remains infected (and infectious). An individual
who is infected at time t was susceptible at time andt � 1
will be recovered by time . The equation states thatt � 1
the number of individuals infected at time is a func-t � 1
tion of the transmissibility of the pathogen at time t (bt),
the number of infected individuals at time t (It), the frac-
tion of individuals susceptible at time t ( ), and theS /Nt t

multiplicative noise (�t). Similar difference equations de-
scribing the process of disease transmission have been used
by Finkenstädt and Grenfell (2000).

Pathogen transmissibility over time (bt) may exhibit cy-
cles of longer-period and long-term trends in addition to
seasonal fluctuations. These longer-term changes in trans-
missibility may result from public health measures altering
the transmission probability of the pathogen, from changes
in the pathogen’s reproductive rate, from changes in con-
tact rates over time, or from climatic variability. We there-
fore consider that pathogen transmissibility bt is the prod-
uct of two separate components: a seasonal one, bseas, and
a long-term one, blt, including both cycles of periods
longer than a year and trends. Equation (1) becomes

g

StaI p b b I � , (2)t�1 lt seas t t( )Nt

where bseas denotes a seasonally varying parameter with n
distinct values for the number of time steps that comprise
a year (Fine and Clarkson 1982; Finkenstädt and Grenfell
1998, 2000) and blt includes both cycles of periods longer
than a year and trends.

The transmission mode of equation (2) is explicitly fre-
quency dependent in that the number of infecteds at time

is proportional to the fraction of susceptible indi-t � 1
viduals in the population at time t. This differs from the
mass-action, or density-dependent, mode of transmission
whereby the number of infecteds at time is depen-t � 1
dent on the absolute number of susceptible individuals at
time t (McCallum et al. 2001). However, our model is able
to model disease dynamics that rely on either frequency-
dependent or density-dependent transmission (or a com-
bination thereof). The exponents a and g are mixing pa-
rameters included to allow for deviations from the
random-mixing assumption (Lui et al. 1987; Finkenstädt
and Grenfell 2000).

The model is completed with a second equation for the
number of susceptible individuals at time t. This number,
St, can be expressed as the total population size minus the
currently infected and recovered individuals still in the
population (Cooke et al. 1977; Y. Xia, J. R. Gog, and B.
T. Grenfell, personal communication). Thus,

m

S p N � I k , (3)�t t t�i i
ip0

where the function k is the product of immunity and sur-
vivorship. The value ki gives the proportion of the pop-
ulation that was infected i time steps ago and remains
immune and alive in the present and is therefore not part
of the susceptible pool. The integer m is the minimum
amount of time necessary for the function k to reach 0
such that any individuals who were infected at least m
time steps ago are either completely susceptible again or
no longer present in the population.

Given only data on the number of infected individuals
(It) and population size (Nt) over time, we now seek to
recover the seasonal transmission rates (bseas), the long-
term transmission rates (blt), the mixing exponents a and
g, and the immunity function k. To fit the model, we first
log transform equation (2), which gives

log (I ) p log (b ) � log (b ) � a log (I )t�1 lt seas t

St� g log � log (� ), (4)t( )Nt
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Figure 1: Top, population decrease from 688,223 to 600,000 over the 60 yr of simulated time series data. Bottom, simulated time series of infecteds
over the same period. The model was simulated using multiplicative noise introduced at a level of , where . The first 300� p exp (0.6z ) z ∼ N(0, 1)t t t

yr of transient simulated data were removed.

with being Gaussian-distributed noise with meanlog (� )t
0. By initially assuming that the number of susceptibles St

is close to the total population size Nt, we simplify this
equation with a Taylor series expansion of tolog (S /N )t t

the first approximation. Then,

m m
N � � I k �� I kt t�i i t�i iip0 ip0

log ≈ , (5)( )N Nt t

where equation (2) was used for the number of suscep-
tibles. From equations (4) and (5), the transmission equa-
tion becomes

log (I ) ≈ log (b ) � log (b ) � a log (I )t�1 lt seas t

m
g

� I k � log (� ). (6)� t�i i tN ip0t

Because of the unspecified variation in blt, a simple para-
metric regression cannot be applied to fit this model. In-
stead, a semiparametric method is used, which consists of

two main steps (Hastie and Tibshirani 1990). First, all
parameters other than blt are obtained by a regression step
using weighted least squares. This regression step is re-
peated a number of times, with a backfitting algorithm
that progressively improves our estimate of the susceptible
fraction in the population through the adjustment of the
immunity function. The immunity estimates are smoothed
with a spline under the constraint of decreasing values.
Second, the values of blt, the parameter that is allowed to
vary in an unspecified way with time, are obtained by
smoothing the residuals of the regression step. The details
of this semiparametric approach are described in the ap-
pendix. We also describe a two-step approach to obtain
both a confidence set for the immunity kernel and point-
wise confidence intervals for the transmissibility values and
the mixing exponents. The first step addresses the uncer-
tainty in the shape of the immunity function resulting from
the spline fit. The second step assumes that the immunity
function is correct, which allows the straightforward com-
putation of pointwise standard error bands for the re-
maining parameters.

To test the performance of the proposed time series
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Figure 2: Parameter estimates (bold black lines) from the model fit to data from figure 1 alongside actual parameters used to generate the time
series (dashed black lines). A, Immunity function k. The actual k is given by the product of survivorship and immunitysurv(i) p 0.95 � 0.0075i

. The 10 curves in gray are a subset of the global confidence set for k created by bootstrapping. B, Logarithm of the seasonalimm(i) p exp (�i/30)
transmissibility over the 12 mo comprising an annual cycle, �2 times the SE of the point estimates (gray circles). Actual seasonal transmissibility
values are given by . C, Estimated logarithm of the long-term transmissibility, �2 SE (gray bands), alongsideb (t) p 1.0 � 0.45 sin (2pt /12)seas mod12

the actual values. D, Observed versus expected . The value for the fit is 0.88. Actual values of . Estimated2log (cases) log (cases) r (a, g) p (0.90, 0.95)
values of , with the �2 SE interval range for and for . Results shown use the(a, g) p (0.8688, 0.6535) a p [0.8262, 0.9113] g p [0.5432, 0.7637]
optimal combination of smoothing bandwidth and penalty weight , determined by cross-validation.10(h, m) p (28, 10 )

method, we applied it to simulated data. The top of figure
1 illustrates the decreasing population size used in the
simulations, while the bottom of figure 1 shows the time
series of infected individuals derived from simulating
equations (2) and (3). These two data sets are the only
inputs to the analysis. Figure 2 shows the results of the
model applied to the simulated data of figure 1. The fitted
model has an value of 0.88. The method is able to2r
recover the immunity function k and the seasonal and
long-term component of transmissibility. Confidence
bands for long-term transmissibility confirm the qualita-
tive pattern of interannual variability as well as its dom-
inant period (fig. 2C). Finally, confidence intervals for both
a and g confirm the deviation from homogeneous mixing
in the transmission process, with both exponents being
less than, and different from, 1. While the value of a is
accurately recovered, this is not the case for g. However,
from other simulations, we have found that the estimates

of all other parameters, including long-term transmissi-
bility, appear only weakly sensitive to the value of g. Fur-
thermore, the possibility of wider standard error bands for
this exponent is discussed in the appendix.

We have assumed transmission to be frequency depen-
dent. However, many diseases exhibit density-dependent
transmission or a combination of both types (Roberts and
Heesterbeek 1993; De Jong et al. 1995). Two ways in which
our frequency-dependent model can be reformulated to
explicitly accommodate for density-dependent transmis-
sion are detailed in the appendix.

Use of Surrogate Measures for Infected Time Series

Time series of infected individuals are often difficult to
obtain directly. Instead, one may have data on hospitali-
zations due to the disease over time, or mortality estimates,
or even severely underreported infected estimates. For any
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of these cases, we can still apply the proposed method to
disentangle the contributions of extrinsic and intrinsic fac-
tors as long as the number of infected individuals is pro-
portional to our surrogate measure. Let

I p cM , (7)t t

where Mt is the surrogate measure of infected individuals
and c is a proportionality constant. Substituting equation
(7) into equation (1) and using the definition of the num-
ber of susceptible individuals from equation (3), we have

g
m

N �� cM kt t�i iip0
acM p b(cM ) � . (8)t�1 t t t( )Nt

Rearranging equation (8) into a form similar to that of
equation (1), we have

g
m

N �� M Kt t�i iip0
aM p B M � , (9)t�1 t t t( )Nt

with and . The model can then bea�1B p b c K p ckt t i i

used to fit the parameters a, g, K, and Bt.

Application of the Full Model to Historical
Cholera Dynamics

We apply the analysis to the monthly records of cholera
mortality for the time period of 1892–1940 in Dhaka (fig.
3B). These data were previously extracted from the disease
records by the medical examiners for former British India
(Sanitary Commissioner’s Reports and the Bengal Public
Health Reports 1892–1940). The aggregation of infected
individuals into monthly intervals is adequate for our pur-
poses because the period of disease communicability is
largely over within 3 wk after the acutely infected stage.
The mortality data exhibit a clear annual cycle, with both
a spring and a fall peak, which is well known in the lit-
erature and has been discussed in relation to monsoonal
variation (Pascual et al. 2002). In addition to seasonality,
there are also multiple interannual cycles present in the
time series, as shown by the local wavelet power spectrum
(fig. 3C). Both an 8-yr and a biennial cycle are evident
toward the end of the time series, while interannual cycles
of 4 yr are present intermittently throughout the entire
time series.

The population size over this time period was recon-
structed from census data taken every 10 yr, monthly birth
data, and monthly death data. The resulting data show
substantial population growth (fig. 3A), with a 72% in-
crease over the 49-yr time period.

Besides ENSO, which represents a remote climate forc-
ing, rainfall has been one local environmental covariate of
interest in cholera because of its influence on environ-
mental water levels, pathogen environmental concentra-
tion, and salinity. Figure 4A shows rainfall data for Dhaka
extracted from the same historical records as cholera. To
further motivate the application of the proposed model,
we present the dominant frequencies and their localization
in time for the rainfall data resulting from wavelet analysis
(fig. 4B). Besides pronounced seasonality, weak interan-
nual variability is detected at periods of 2 and 4 yr. There
is, however, no interannual variability at the longer period
of 8 yr observed in cholera. To go beyond scale matching,
application of the model allows us to consider the alter-
native hypothesis that intrinsic dynamics and its interplay
with seasonality play a role in generating these cycles.

The application of the model to the historical disease
data yields some interesting results of the duration of tem-
porary immunity and of the roles of extrinsic versus in-
trinsic factors (fig. 5). The mixing exponent isa p 0.74
lower than 1, indicating a deviation from the homoge-
neous mixing assumption (fig. 5). The value of g, at 0.97,
is close to 1. The immunity function k declines to 0 over
a period of approximately 9 yr (fig. 5A). Because this func-
tion combines survivorship and temporary immunity, the
exact waning period of immunity is expected to last no
less than 9 yr. Because the disease data are deaths and not
infected numbers, we can interpret the Y-axis intercept of
this curve according to equation (9), where we can assign
the value of 1 to k0 and therefore compute c as approxi-
mately 72. The interpretation is that approximately one
out of every 72 cholera cases (including both symptomatic
and asymptomatic cases) died from the disease. Repre-
sentative curves from the 95% confidence set are typically
similar in shape to the estimated function, with a fast initial
decline followed by a plateau and long duration of im-
munity (above 7 yr). The seasonal transmissibility esti-
mated by the model (fig. 5B) fits the known pattern for
Dhaka; two peaks occur annually, in March and Novem-
ber, resulting in high levels of cholera mortality in April
and December. The long-term transmissibility (fig. 5C)
shows first a steady decline followed by a leveling off
around 1922, with no indication of significant interannual
variability.

The application to cholera, for which we have mortality
instead of incidence data, required the assumption of a
constant relationship between incidence and mortality. Al-
though cholera mortality rates are known to have de-
creased in hospitals over this period, it is highly unlikely
that the developing treatments reached the majority of the
affected population at the beginning of the twentieth cen-
tury (M. Bouma, personal communication). In fact, mor-
tality rate estimates for this region, compiled by the World
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Figure 3: A, Population growth in the district of Dhaka over the time period 1892–1940, reconstructed from census, mortality, and birth records.
We assumed census and mortality data to be accurate and adjusted the birth reporting rate such that census reports were met. Under this assumption,
birth reporting rates between censuses were statistically determined to be 96.8% (1891–1901), 95.41% (1901–1911), 99.33% (1911–1921), 86.45%
(1921–1931), and 71.56% (1931–1941). B, Monthly cholera mortalities in Dhaka over the same time period. C, Wavelet time series analysis for the
Dhaka cholera mortality time series. (Wavelets are used to decompose the variance of a time series into different frequencies at different localities
in time. Thus, contours of high intensity in the color scale indicate the presence and dominance of a particular period at a given time. For further
explanation of wavelet analysis, see Torrence and Compo 1998; Grenfell et al. 2001 for an application to disease data.) Data were log transformed
and detrended prior to wavelet analysis. The Morlet wavelet function was used. The logarithm of power is color coded as shown on the bottom
bar. Wavelet software was provided by C. Torrence and G. Compo and is available at http://paos.colorado.edu/research/wavelets/.

Health Organization since 1950, indicate that the case fa-
tality rates of symptomatic cholera infections were re-
markably constant, at approximately 60% for nearly 2
decades.

The one-step-ahead model predictions, when compared
with the actual cholera mortality data, give a good fit, with
an value of 0.82 (fig. 5D). However, if we predict the2r
number of cholera deaths further into the future, pre-
dictability decreases rapidly in 4 mo, leveling off to an

value of close to 0.63 (not shown).2r
This rapid loss of predictability can be examined further

by simulating the deterministic skeleton from the initial

conditions for the entire time span of the data (fig. 6A).
Given the initial mortality history (1892–1902), the pop-
ulation records, and the fitted parameters, we iterate the
deterministic model for 39 yr, 1903–1941. The resulting
simulation shows that the interannual variation in mor-
tality is quickly lost through time. In fact, when iterated
for extended periods of time with a constant interannual
transmissibility and a constant population size, the deter-
ministic skeleton generates a regular annual cycle with no
interannual variability.

Interestingly, however, when dynamic noise is added to
the simulation by sampling the residuals from the fit, in-
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Figure 4: A, Monthly rainfall data from the district of Dhaka over the time period 1893–1940. B, Wavelet time series analysis for these data. The
Morlet wavelet function was again used in the analysis.

terannual variability persists (fig. 6B, 6C). To determine
whether interannual variability would be retained indefi-
nitely, we simulated the mechanistic model with dynamic
noise for extended periods of time, again using constant
interannual transmission values and constant population
sizes. Wavelet analyses of these simulated time series all
exhibited sustained interannual variability (not shown).
The noise appears to interact with the nonlinear deter-
ministic dynamics generating multiple timescales of in-
terannual variability. This interannual variability clearly
differs from that obtained by simply adding measurement
noise to the deterministic annual cycles, which does not
generate significant interannual cycles.

One pattern observed in the cholera data is the change
from an interannual cycle on the order of 4 yr to multiple,
coexisting interannual cycles, including a strong 8-yr in-
terannual cycle and evidence for both a biennial cycle and
a weaker 4-yr cycle after 1930 (fig. 3C). In the stochastic
simulations, the exact timing of the interannual frequen-
cies varies with the specific sequence of noise added. How-

ever, the transition from one long interannual cycle to
multiple coexisting cycles, including a more pronounced
biennial cycle, is repeatedly seen in these stochastic sim-
ulations and seems to be a general feature that may result
from the nonstationarity of population sizes and trans-
mission coefficients (fig. 6C).

Discussion

We have presented a nonlinear time series model to iden-
tify the respective contributions of extrinsic forcing and
intrinsic deterministic feedbacks in infectious disease dy-
namics. The approach further reconstructs the pattern of
decaying immunity from time series data on cases and
population sizes. Although recent work has been able to
successfully estimate the duration of temporary immunity
in seasonally forced disease systems (Y. Xia, J. R. Gog, and
B. T. Grenfell, personal communication), our model fur-
ther allows for interannual fluctuations and long-term
changes in transmissibility. Consideration of these factors
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Figure 5: Parameter estimates (bold black lines) from the model fit to the Dhaka cholera data from figure 3. A, Immunity function k over 11 yr.
The 10 curves in gray are a subset of the global confidence set for k created by bootstrapping. B, Logarithm of the seasonal transmissibility values
over an annual cycle (black) �2 times the SE of the point estimates (gray circles). C, Logarithm of long-term transmissibility (black) �2 SE bands
(gray bands). D, Observed versus expected . The standard deviation of the residuals is 0.72. The value for the fit2log (mortalities) log (mortalities) r
is 0.82. Estimated values of , with the �2 SE interval range for and for . Results(a, g) p (0.7374, 0.9684) a p [0.6682, 0.8066] g p [0.7874, 1.1495]
shown use the optimal combination of smoothing bandwidth and penalty weight , determined by cross-validation.6(h, m) p (47, 10 )

in the context of the nonlinear dynamics of disease be-
comes important to address the role of climate variability
and climate change in interannual disease patterns (Pas-
cual et al. 2000; Rogers et al. 2002). A similar semipara-
metric approach can be developed to address the role of
extrinsic drivers in population patterns other than those
of infectious diseases.

The application of our model to historical cholera data
indicates that interannual cycles in the past can be attrib-
uted to the interplay of temporary immunity, seasonality,
and noise. Changes in transmissibility over time are pre-
sent only as a long-term trend and seasonality, with no
clear role of extrinsic forcing at interannual timescales.
This result is consistent with the recent report of a strong
forcing signal by ENSO only in recent decades, which ap-
pears weaker or absent in historical times (Rodó et al.
2002). This difference between past and present has been
interpreted as evidence for an effect of climate change. We

specifically looked here for an ENSO signature in the
model’s residual noise but found no significant lagged or
nonlagged correlation of the residuals with the Southern
Oscillation Index, rainfall, sea surface temperature anom-
alies in the Pacific, or ENSO years derived from historical
publications (Quinn et al. 1987). Furthermore, the resid-
uals show no evidence of significant autocorrelation. There
is, however, clear seasonal variation in transmissibility,
with peaks in spring and late fall, as expected from the
seasonality of the disease and from the environmental driv-
ers proposed in the literature, specifically temperature and
rainfall (see Pascual et al. 2002 for a review).

Our approach is meant to complement, and not to re-
place, other correlative or scale matching approaches to
determine the role of environmental forcing. By addressing
the criticism that no alternative explanation to extrinsic
forcing is allowed for interannual cycles (Roger et al. 2002),
application of the proposed model can reinforce or weaken
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Figure 6: A, Deterministic skeleton for the cholera model with the fitted parameters shown in figure 5. B, Representative stochastic realization of
the mechanistic cholera model with the same fitted parameters. Noise was added dynamically by sampling (with replacement) from the residuals
of the model’s fit. C, Wavelet time series analysis for the noisy deterministic skeleton shown in B. Data were log transformed and detrended before
wavelet analysis, as for figure 3C. The Morlet wavelet function was used.

our conclusions from correlative evidence. Here, our re-
sults provide an explanation based on temporary immu-
nity for the long cycles in cholera of approximately 8 yr,
which are absent in the rainfall record and remain un-
explained by other environmental covariates so far ex-
amined, such as ENSO. Temporary immunity and sea-
sonality also appear able to account for the periods of 2
and 4 yr observed in both cholera and rainfall. One as-
sumption of the proposed method is, however, the smooth
variation of long-term transmissibility and, therefore, of
the response of cholera to environmental variables.
Threshold behavior would receive the use of a different
type of time series model.

Although it has been known that individuals recently
recovered from cholera experience some temporary im-
munity, quantitative estimates of the duration of immunity
have not been previously available. Here, we find that

partial immunity lasts no less than 9 yr. The exact degree
to which an average individual is immune, however, is
unknown because of the model’s inability to separate im-
munity levels from survivorship. Field trials have shown
that in Bangladesh, where cholera is endemic, the disease’s
case rate falls sharply with age, whereas in epidemic areas
with no previous cholera occurrences, adults experience a
higher incidence rate (Mosley et al. 1968). This pattern
suggests that long-term immunity to cholera exists, and
additional studies confirm this conjecture. In a 42-mo sur-
veillance program, only seven out of 2,214 individuals were
reinfected with cholera, which corresponded to a 61%
lower incidence rate for reinfections than for primary in-
fections (Clemens et al. 1991). In another field trial, only
three reinfections occurred over a 9-yr period, compared
with an expected 29 reinfections in the case of no tem-
porary immunity (Glass et al. 1982). Protection against
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classical cholera reinfection lasting at least 36 mo has also
been observed in experimental rechallenge studies (Levine
et al. 1981). These studies are consistent with our results
that indicate a high degree of immunity for the first 5 yr
following an infection and then a subsequent waning of
immunity over the four subsequent years. Further com-
plications in patterns of immunity arise from the existence
of different strains in more recent times. We are currently
extending the approach to analyze recent records in which
two different biotypes are present.

In our simulations, the interaction of exogenous noise
with the seasonally forced deterministic dynamics gener-
ates interannual variability with multiple temporal scales
instead of the simple annual cycle observed in the absence
of noise. It remains to be determined whether the more
complicated patterns seen in the presence of noise result
from the proximity to a bifurcation point and the related
“ghost” of attractors that have lost stability. There are other
examples in the ecological literature of the complex in-
teractions that are possible between noise and nonlinear
feedbacks (e.g., Higgins et al. 1997; Rohani et al. 1999,
2002). The cholera example shows that irregular cycles
with multiple dominant frequencies are another possible
outcome.

The model considers that transmission dynamics result
primarily from short-term contacts between infected and
susceptible individuals. The existence of an environmental
aquatic reservoir for Vibrio cholerae introduces a possible
alternative route of transmission through contaminated
water in the environment. However, if the abundance of
the pathogen in the reservoir experiences an important
feedback from the levels of infection in the population,
the treatment of transmission as in other infectious dis-
eases is justified. Furthermore, recent evidence has un-
covered heightened pathogen infectivity following passage
of the pathogen in the human host (Merrell et al. 2002),
which would reinforce the transmission feedback from in-
fected to susceptible individuals.

The application of the semiparametric model to diseases
with long-term immunity requires an extensive data set.
This requirement is dictated primarily by the duration of
immunity itself; data limitations clearly arise when the
duration of temporary immunity becomes comparable to,
or a significant portion of, data set length. Application of
the model is also problematic when the prevalence of the
disease in the population is low, such that the fraction of
susceptible individuals in the population is close to 1, and
when the dynamics are perfectly periodic. Sufficient in-
terannual variability is necessary in order to successfully
separate temporary immunity from extrinsic forcing. With
simulated data, we have extensively examined conditions
leading to the model’s failure as well as signatures of this
failure. When the approach fails to recover the underlying

forcing and/or immunity pattern, the results of the fit are
never biologically plausible. In other words, failure of the
model is clearly recognizable. Particular signatures include
a mixing exponent g that does not converge and goes to
large negative or positive values together with values of k

that converge to 0.
Another technical question is in regards to the conver-

gence of our method, including a backfitting algorithm to
a global optimum. Unique solutions have been shown for
simpler semiparametric models (Hastie and Tibshirani
1990, p. 118). Although the convergence of our method
remains to be analytically demonstrated, extensive simu-
lation results suggest the existence of a global optimum.
These results include modification of the initial k function
(obtained in the first step of the backfitting algorithm) by
reducing its values by a fixed fraction. In this case, the
method produces the same final immunity function up to
a point where the initial values are too low and result in
the pathology described above, of no convergence for g

together with values of k approaching 0.
The model presented here uses a semiparametric ap-

proach. The parametric part of the model allows for a
portion of the dynamics to be defined mechanistically,
while the nonparametric part of the model allows for flex-
ibility in long-term or interannual changes in a parameter
of interest. Although the usefulness of semiparametric
models has been recently underscored in the ecological
literature (Ellner et al. 1998), their application to nonlinear
dynamics that are driven by long-term or interannual var-
iation has not been recognized (with the exception of a
fisheries model; A. Solow, personal communication). For
the relatively long time series of disease records, gradual
changes in parameter values are inevitable. Many time
series are therefore detrended before they are fit with fully
parametric models. The semiparametric model is able to
detrend such a time series without imposing a specific
form for the trend (linear, quadratic, etc.) while allowing
for the possible interplay of such a trend with the nonlinear
dynamics.

Interannual variability with irregular patterns is com-
mon in ecological data. Ecological models have shown
innumerable examples of complex responses to forcing, as
nonlinearity allows the transfer of variability across tem-
poral scales. While separating and identifying from data
the factors responsible for such patterns appear to be
daunting tasks, it is exactly the information contained in
these highly irregular patterns that can make it possible.
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