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1.  INTRODUCTION

Cholera outbreaks in endemic regions exhibit both
seasonality and interannual variability, with significant
differences in size from year to year. There has been a
long history of trying to explain these interannual cycles,
the period of which varies from 3 to 8 yr, based on
associations with climate (e.g. Russell 1925). The re-
emergence of cholera in Peru in 1991 to 1992, after the
absence of the disease in South America for almost a
century, which coincided with an El Niño event, moti-
vated the hypothesis that the El Niño Southern Oscilla-
tion (ENSO) is a driver of cholera dynamics (Epstein et al.
1993, Colwell 1996). This hypothesis was tested quanti-
tatively in endemic regions where the disease has been
present for a long time and surveillance disease data
encompass multiple climate events (Pascual et al. 2000,
Bouma & Pascual 2001, Rodó et al. 2002, Koelle et al.
2005). It was also addressed at global scales by consider-
ing the emergence of the disease on different continents

over the last century (IPCC 2007). Thus, quantitative
evidence has accumulated for a role of ENSO in cholera
dynamics in Bangladesh, with an increase in both trans-
mission rates and cases following the warming of the
Pacific at lags from 9 to 12 mo. These studies have also
illustrated the complexity of the interaction between
climate variability and non-linear disease dynamics. In
particular, the size of outbreaks is also influenced by the
fraction of susceptible individuals in the population, the
temporal variability of which is, in turn, determined by
the processes of transmission and immunity (Koelle &
Pascual 2004, Koelle et al. 2005).

Given recent advances in the time series modeling of
cholera, it is timely to ask whether existing models pro-
vide a useful tool for forecasting outbreaks. The inter-
est in the predictive ability of statistical or mathemati-
cal models of disease is evident in the literature on the
development of climate-based, early warning systems
for infectious diseases that are environmentally driven
(e.g. Gill 1938, Connor et al. 1999, Hay et al. 2003).
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Efforts in this direction are underway, for example, for
epidemic malaria in transition regions, as illustrated by
the work in Botswana based on rainfall variability and
correlative approaches (Thomson et al. 2005, 2006).
We are not aware of any similar efforts with dynamical
models that explicitly incorporate immunity (but for a
time series approach motivated by these models, see
Abeku et al. 2004). Furthermore, one challenging test
that is seldom considered is the ability of quantitative
approaches to forecast ‘out-of-fit’ data, that is, data not
previously used to fit the model itself. A recent excep-
tion is found for American cutaneous leishmaniasis, for
which a time series model that incorporates ENSO
was better able to forecast cases 1 yr ahead than a null
model without any climate information, or equivalent
formulations with only regional climate variables
(Chaves & Pascual 2006).

In the present study, we revisit semi-mechanistic
model of cholera previously developed and parameter-
ized for a time series of monthly cases in Matlab,
Bangladesh, for the period from 1966 to 2002. We exam-
ine its ability to both predict outbreaks in the past (1985
to 2000) and to forecast the future (2000 to 2005). Hind-
cast prediction addresses the loss of predictive ability re-
sulting from simulating the non-linear model forward in
time, while forecasting directly addresses the perfor-
mance of the model for out-of-fit data. Results confirm
the importance of the interplay between the susceptible
fraction in the population and climate variability (ENSO),

but now from the perspective of prediction. They also
support the feasibility of using the model as a forecasting
tool: the lack of extreme events between 2001 and 2005
would have been correctly anticipated half a year ahead
with 75% confidence. Finally, ENSO appears to signifi-
cantly improve the model’s predictive ability. We discuss
the limitations of our approach as well as future develop-
ments for its improvement.

2.  DATA

The cholera data are monthly cases for the 2 biotypes
of Vibrio cholerae known as El Tor and Classical
(Fig. 1a) from the surveillance program by the Interna-
tional Center for Diarrheal Disease Research (ICDDR,
B) in Matlab, Bangladesh, from 1966 to 2005. These 2
strains correspond to different phenotypes of the bac-
terium within the pathogenic Serogroup 01. Our model
focuses on the dynamics of El Tor, which has replaced
Classical over time and whose dynamics continue to be
relevant for the prediction of cases today. Cases due to
Classical are only intermittent in the series, with the
last epidemics observed in the 1980s (Fig. 1a). The new
Serogroup 0139, which emerged in 1993, is not consid-
ered here because it has no cross-immunity with El Tor
and therefore no mechanistic link to its dynamics. It
has also failed to displace El Tor and has caused a neg-
ligible number of cases in Matlab in recent years.

Fig. 1. Model outputs and cholera data. (a) Cholera time series
of monthly cases are shown for the El Tor (blue) and Classical
(red) biotypes. The model acts as a non-linear filter, with the
cholera cases and population size as inputs and the following
outputs (El Tor biotype only): (b) the temporal variability of
the long-term transmission rate βlt, (c) the fraction of suscepti-
bles in the population, (d) and the seasonal transmission rate,
in addition to the function describing the decay of immunity
and cross-immunity over time (not shown). These results cor-
respond to the fit of the model in Koelle et al. (2005) for 1966
to 2002. The exponent α in Eq. (1) is 0.57. The model explains 

63% of the variance in the El Tor cases
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For ENSO, the index known as Niño3.4 is used here
(obtained from www.cpc.ncep.noaa.gov/data/indices/
sstoi.indices).

We also consider a regional environmental variable,
the monthly Brahmaputra river discharge from 1977 to
2005 (gauge data in m3 s–1 at the first station in Bangla-
desh). Previous analyses have shown that the low-
frequency variation (periods of >7 yr) in the anomalies
of this variable is negatively correlated with the long-
term transmission rate of cholera (r = –0.9278, p < 0.02,
lag = 7 mo, significance determined with a bootstrap
method that generates surrogate time series for one of
the variables by randomizing the phases but preserv-
ing the power spectrum and autocorrelation function;
Koelle et al. 2005).

3.  METHODS

We summarize here the main features of the model
(for details see Koelle & Pascual 2004, Koelle et al.
2005). Epidemiological models for the population
dynamics of infectious diseases typically divide the
population into a number of classes or compartments
for the susceptible, infectious, and recovered individu-
als and follow changes in these variables in continuous
time (Anderson & May 1991). When recovered indi-
viduals have temporary immunity and return to the
susceptible class after losing immunity, the models are
known as SIRS. Discrete formulations of these types of
models have been formulated to analyze epidemio-
logical time series and fit their parameters; they are
known as TSIR or TSIRS for permanent and temporary
immunity, respectively (e.g. Finkenstadt & Grenfell
2000, Koelle & Pascual 2004). The discrete formulation
implicitly assumes that the time step coincides with the
generation time of the infectious class. In the TSIRS
for cholera, 2 equations describe the dynamics of the
disease. The first one is a non-linear transmission
equation of the form:

(1)

where It is the number of individuals infected (for our
model, by the biotype El Tor), St is the number of indi-
viduals susceptible to El Tor, Nt is the total population
size, and εt is a multiplicative noise term, all at time t.
The exponent α is used to incorporate deviations from
the random mixing assumption (e.g. Roy & Pascual
2006). The pathogen transmission rate βt is a key para-
meter which we specifically let vary in time, to repre-
sent the effect of extrinsic drivers on the transmission
rate. This parameter corresponds to the number of
contacts per infectious individual per unit time, multi-
plied by the probability that a contact with an infec-
tious individual leads to infection. For cholera, contacts

reflect fecal-oral transmission via food and water and/
or environmental transmission via contamination of
aquatic environments used by humans. βt contains
both a seasonal component βseas and a longer-term
component βlt, such that βt = βseasβlt in transmission
rates. In particular, this formulation allows for mecha-
nisms that influence interannual variability in βt as the
result of a modulation of the seasonality. A second
equation specifies the number of susceptible individu-
als at time t:

(2)

where Nt is the current population size at time t, 

is the total number of individuals recovered 

from an El Tor infection and immune to El Tor reinfec-

tion, and is the total number of individuals 

recovered from infection by a second biotype known
as Classical and immune to El Tor reinfection. The
functions κi and κi

CL describe the decay of immunity
and cross-immunity, respectively, with the subscript i
indicating the number of months since infection and
the values of κ and κi

CL being the degrees of immunity
an individual has i months after being infected. The
model focuses on the dynamics of El Tor because this
strain has displaced Classical in the past 2 decades
and infections display a continuous temporal record
(Fig. 1a). The cases for the other strain, Classical, dis-
play intermittent behavior and disappear for those last
decades; they are used as an input to model the dy-
namics of El Tor given the existence of cross-immunity.
Eqs. (1) and (2) are combined into a single expression
relating incidence levels in the present to those in the
past.
The model is semi-parametric or semi-mechanistic
because it combines an explicit formulation of trans-
mission with the completely unspecified variation of a
key parameter, the (long-term) transmission rate.
Thus, the model acts as a non-linear filter, with the
time series of cases and population sizes as inputs and
several outputs, including the decay of immunity, the
reconstruction of susceptibles over time (Fig. 1), the
seasonal transmission rate (Fig. 1), and the (long-term)
temporal variability of the transmission rate (Fig. 1).

There are 2 places in the model where climate forc-
ing can play a role: the variation of the long-term trans-
mission rate βlt and the residuals εt. After the model is
fitted, these patterns of variation can be compared to
climate variables for evidence of forcing. While this
comparison was carried out in Koelle et al. (2005) by
adding these terms and decomposing the resulting
signal into fast and slow components (with periods
smaller and larger than 7 yr, respectively), we take
here a more direct approach and analyze the (linear)
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correlation between specific months of the residuals εt

and an index of ENSO (Niño3.4). Specifically,

εmo = a × Niño34Jan + b + e(t) (3)

where the εmo denotes the residuals εt for a given
month, say September, Niño34Jan denotes the ENSO
index in January, e(t) corresponds to the errors of this
linear regression, that is, to the variability in εt that
remains unexplained by ENSO, and a and b to its slope
and intercept. Three specific months show significant
associations: July, August, and September. We use
these associations as the basis to incorporate this cli-
mate covariate into the model. Thus, the model is com-
posed of Eqs. (1) and (2). When we further use Eq. (3)
to specify εt for specific months as a function of the Jan-
uary Niño3.4 in the transmission Eq. (1), we refer to
this system as the model with ENSO.

We evaluate 2 aspects of the predictive ability of the
model. The first one concerns the loss of predictive
ability as the model is iterated forward in time. For this,
we consider the El Tor monthly cases for the period
between 1985 and 2000, which encompass 3 main
El Niño events: 1986/1987, 1991/1992, and 1997/1998.
For each time t (i.e. each month), we simulate the
model 7 mo ahead and compare this 7 mo lead predic-
tion with the corresponding observation. A measure of
predictive ability is given by the so-called prediction r2,
which normalizes the error of the predictions using the
variance of the time series and substracts this nor-
malized error from 1. The closer this value is to 1, the
higher the model’s predictive ability. Values close to
zero or negative indicate poor performance.

To provide a measure of the uncertainty in the pre-
dictions, the simulations are stochastic and incorporate
the multiplicative noise specified by the residuals εt by
randomly sampling these terms from the values for the
corresponding month. In the model with ENSO, this
random sampling applies only to the months for which
there is no effect of this covariate. For the other months,
August, September, and October, the noise term con-
tains 2 different components: the value predicted by the
regression with January sea surface temperatures
(SST), and a random sampling from the residuals of this
regression, that is, from e(t) in Eq. (3) (see Fig. 2) From
500 simulations, we obtain the median and the 25 and
75% percentiles for the distribution of predictions at
each time. A prediction horizon of 7 mo is selected be-
cause the shorter lag with January SSTs, that for
cholera in August, is of 7 mo; therefore, longer simula-
tions would require a prediction of the covariate itself.
An alternative scheme would be to predict February,
March, April, and so on, until December from every
January, with a varying prediction horizon depending
on the month. Similar results to those presented here
for 7 mo were obtained, and are, therefore, not shown.

In this first step, we take the values of βlt as given.
However, because this parameter constitutes the non-
parametric part of the model, its temporally varying
values would be unknown as the model is simulated
forward. We therefore explore different treatments of
βlt, including setting it to a constant value for the whole
prediction interval of the simulation and modeling its
variation as a function of a regional climate variable,
the Brahmaputra river discharge anomalies (Table 1).
River discharge was obtained by averaging daily val-
ues per month, ignoring missing values. The monthly

134

Fig. 2. Model residuals εt (Eq. 1) for the months of July, August,
and September as a function of the El Niño Southern Oscilla-
tion (ENSO) index known as Niño3.4 in January of the same
year. The red lines show the fit of a linear regression to these
data (Eq. 3). Significant positive correlations are found be-
tween January warming in the Pacific and the residuals of
these months (September: r = 0.61, p = 0.01, a = 0.39, b = –0.09;
August: r = 0.75, p = 0.001, a = 0.37, b = –0.09; July: r = 0.47, 

p = 0.08, a = 0.33, b = 0.19)
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data was then filtered using a low pass filter (Cazelles
et al. 2007) to separate low-frequency (periods >7 yr)
from high-frequency (periods <7 yr) components in the
series following Koelle et al. (2005). This time scale was
explicitly chosen to separate variability that may be dri-
ven by ENSO from that whose drivers are not related to
ENSO (periods <7 and >7 yr, respectively). With this fil-
tered signal the following linear model was fitted to βlt:

βlt(t) = µ + α1RD(t – 4) + α2RD(t – 6) + 
α3RD(t – 7) + α4RD(t – 8) + ε(t) (4)

where the lags for the covariate, river discharge (RD),
were chosen as those that maximize cross-correlations,
following Royama (1992). A model selection criterion,

the adjusted r2 (Faraway 2004), shows that considera-
tion of the ENSO index is not needed, as expected.

The second aspect considers forecasting accuracy for
‘out-of-fit’ data. We re-fit the model to the case data up
to 2000 and use the last part of the time series from
2001 to 2005 to evaluate predictions. These forecasts
are again generated by stochastic simulations of the
model forward in time for 7 mo, starting with the
observed cases at time t as initial conditions (as well as
the previous values needed to compute the susceptible
fraction at time t), then moving this initial observation
forward by 1 mo and repeating the 7 mo simulation,
and so on. This procedure mimics the real-world sce-
nario of generating 7 mo lead forecasts in real time as
we gather new data, 1 mo at a time. Here, the non-
parametric nature of βlt is tackled by re-fitting the
model for each additional observation, and obtaining
this parameter up to time t. This value is then kept con-
stant for the 7 mo of the simulation. To evaluate the
forecasts, we use, in addition to the prediction r2, a less
stringent but more practical criterion that considers the
ability of the model to anticipate extreme events. We
define an extreme outbreak as one that surpasses the
90% percentile of the distribution of cases (obtained
from the 1966 to 2000 time series). We consider the

median of 500 simulations and deter-
mine the highest percentile of the dis-
tribution of predictions for which we do
not cross this threshold, to establish a
measure of the confidence with which
we can say that an extreme event will
not occur.

4.  RESULTS

The residuals of the model exhibit
significant correlations with SST anom-
alies in the Pacific (Niño3.4) for 3 spe-
cific months only: July, August, and
September (Fig. 2). Warming in Janu-
ary is followed by an increase in the
residuals of these 3 mo preceding or
coinciding with the fall peak, typically
in September for the El Tor biotype. A
linear regression is fitted to these resid-
uals as a function of Niño3.4 as a simple
way to incorporate the effect of ENSO
to the dynamics.

Fig. 3a,b shows the 7 mo lead predic-
tions for the period from 1985 to 2000,
obtained by taking each observation
(and preceding cases) as initial condi-
tions and simulating the model for 7
consecutive months stochastically with
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Fig. 3. (a,b) Comparison of 7 mo lead predictions to data (black) for the TSIRS
model (a) without and (b) with ENSO as a covariate (blue and red, respectively).
The median of 500 stochastic simulations is shown for each time, together with
the 25 and 75% percentiles. (c) Sea surface temperature (SST) anomalies corre-
sponding to the ENSO index Niño3.4. The model with ENSO (b) more accu-
rately predicts the different size of the outbreaks that follow the El Niño events
of 1986/1987, 1991/1992, and 1997/1998. Note that similar values of SST anom-
alies can result in considerable differences in the size of predicted epidemics
(compare 1987 to 1992). The predictive r2 of the model that incorporates ENSO 

equals 78% (vs. 71% when this covariate is not taken into account)

Estimated SE t Pr(>|t |) 

µ = 4.952939 0.087429 56.651 <2 × 10–16***
α1 = –0.236410 0.023314 –10.1400 <2 × 10–16***
α2 = 0.617220 0.062062 09.945 <2 × 10–16***
α3 = –0.453610 0.046532 –9.748 <2 × 10–16***
α4 = 0.072646 0.007784 09.332 <2 × 10–16***

Table 1. Parameters for the linear regression of the long-
term transmission rate β lt (1977 to 1998) as a function of river 

discharge (Eq. 4). ***p < 0.001
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and without ENSO, respectively. The model that incor-
porates ENSO is better able to predict the different
sizes of the outbreaks that follow the 3 main El Niño
events in 1986/1987, 1991/1992, and 1997/1998, al-
though the 2 other outbreaks that accompany the sus-
tained warming conditions in 1992 to 1995 are not cap-
tured. It is interesting to compare the response of the
model for the first 2 events, when SST anomalies are of
very similar magnitude, but the resulting cholera out-
break is much larger in 1992 than in 1987 (Fig. 3). Note
that this is not the result of a higher value of the trans-
mission rate βlt (Fig. 1b). In fact, this parameter is
higher in 1987. Thus, this difference in the disease
response must follow from the larger number of sus-
ceptibles in 1992. The previous epidemics of the 1970s
and early 1980s have depleted the pool of susceptibles,
and the dynamics of cases can only weakly respond to
warming in 1987 (Fig. 1a). Notice that periods of high
outbreaks are followed by low outbreaks in an alter-
nating pattern lasting almost a decade. This reflects
the buildup and waning of immunity over several
years, with the corresponding periods of high and low
response to climate forcing as described in Koelle et al.
(2005). In 1987, the disease model is in a refractory
state responding weakly to exogenous forcing by
ENSO. Differences in the susceptible pool cannot fully
explain, however, the size of epidemics when com-
paring 1992 to 1998. Here, the decrease in the trans-
mission rate βlt also plays a critical role.

This brings us to one disadvantage of using a semi-
parametric model for predictive purposes. We have
taken the value of the variable transmission rate βlt as
given to focus on the mechanistic part of the model and
the interaction of climate forcing with the non-linear
dynamics of the disease. Because the variability in this
parameter would presumably be unknown for the pre-
diction window, one would like, ideally, to also be able
to predict this parameter. In Koelle et al. (2005), a neg-
ative and highly significant correlation is shown for βlt

and the low-frequency variation of 2 regional climatic
variables, namely NEIR (North East Indian rainfall)
and river discharge for the Brahmaputra. We investi-
gate here the association with river discharge further
by comparing the predicted values of a linear regres-
sion fitted to βlt before 1998 (Eq. 4) to the values of this
parameter before and after 1998 (Fig. 4). The goodness
of fit for the early part of the βlt time series is remark-
ably high, and simulations that use the value of βlt pre-
dicted using river discharge (Eq. 4) give results similar
to those obtained by taking βlt as given (not shown).
However, the accuracy of the predicted βlt after 1998 is
surprisingly low, which precludes using river dis-
charge as a means to obtain this parameter after 1998.

Given this apparent break in the relationship be-
tween long-term transmission and river discharge, we

considered that βlt remains constant for the prediction
interval of 7 mo, based on the knowledge that this is a
slowly varying parameter (Koelle et al. 2005; for details
see also Koelle & Pascual 2004). This parameter was
obtained for each added observation of monthly cases
by re-fitting the TSIRS model (Eqs. 1 & 2). Another
parameter that varies in time and is needed for updat-
ing susceptibles but is unknown in practice during the
prediction interval, is population size. However, this
variation has negligible effects, and the long-term
trend in population size can easily be projected 7 mo
into the future.

Fig. 5 presents the 7 mo lead forecasts for the more
recent period from 2001 to 2005, with the model with
and without ENSO and a constant βlt for each predic-
tion interval. Both models would have predicted the
lack of an extreme outbreak for these years with 75%
confidence. That is, the 75% percentile for the distri-
bution of predicted cases for each month does not
cross the threshold that defines an extreme event.
Only 1 El Niño event occurred during this period, in
2002. While the fraction of susceptibles in the popula-
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Fig. 4. Long-term transmission rate βlt as a function of river
discharge for the model fitted to the whole time series from
1966 to 2005 (black dots, below the green curve before 2000).
The plots start in 1977 because the initial part of the data is
used as first conditions given the duration of immunity and
cross-immunity (Koelle et al. 2005). Values of βlt obtained by
fitting the model up to the year 2000, and by successive fits
of the model, where 1 data point is added at a time from
2000 to 2005, after that year (green curve). These latter values
are used in the forecasts for the period from 2000 to 2005,
mimicking the situation of updating the model as new
monthly data become available. Predicted values and confi-
dence intervals for a linear regression of βlt as a function of
river discharge (Eq. 3) fitted for the data from 1977 to 1998
(red curve). Note that, although these associations provide a
reasonable fit, they predict the long-term transmission rate 

very poorly after 1998
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tion is high, the long-term transmission
rate is low and remains low for this
whole period (Fig. 1b,c), precluding, in
part, a response to ENSO. Still, the
ENSO-based model overestimates the
response in 2003. While Bangladesh
typically experiences increased rain-
fall following a winter El Niño event
(Cash et al. 2007), there is consider-
able event-to-event variability. Despite
following a warm event, summer rain-
fall over Bangladesh in 2003 was defi-
cient, and may explain why the model
overestimates the cholera response for
that year (Fig. 6). In 2001, the model
without ENSO overestimates the cases
significantly, whereas the model with
ENSO accurately predicts the low lev-
els of the disease. This difference is
due to the effect of a negative SST
anomaly.

5.  DISCUSSION

This initial exploration of the TSIRS
model from the perspective of predic-
tion supports the feasibility of using this
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Fig. 5. (a) The 7 mo lead forecasts of out-of-fit data. Cholera cases are shown in black, and the median of 500 forecasts are shown
in red and blue for the model with and without ENSO, respectively. The dashed line indicates the 90% percentile of the distribu-
tion of cases, used here to define extreme outbreaks. (b,c) Forecasted years with the 25 and 75% percentiles of the distribution of
predicted values for each month added. The model forecasts the lack of extreme events from 2001 to 2005 with 75% confidence.
The predicted r2 ≈ 98% is quite high for both models because the variance of the whole time series of cases is used to normalize 

the errors

Fig. 6. June-July-August (JJA) rainfall anomaly for the summer of 2003 rela-
tive to 1950–2003 climatology, showing a rainfall deficiency over Bangladesh.
The pattern is very nearly the opposite of the 1976 to 2002 composite
warm–cold anomaly pattern, with dry conditions over south-west India and
central-western Bangladesh and wet conditions over north-west and central
India, along with wet anomalies surrounding Bangladesh (not shown). The 

precipitation data are from Chen et al. (2002)
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model for short-term forecasting of cholera in Matlab,
Bangladesh. The results for 1985 to 2000 also indicate
that ENSO is a useful covariate to include in the model.
This variable was incorporated in the model using a
simple approach, based on the demonstrated signifi-
cant and positive association between an index of
ENSO, Niño3.4, and the lagged residuals of the trans-
mission equation in the months of July, August, and
September. Interestingly, this pattern of association is
consistent with that observed for September cases and
a global grid of January SST anomalies in the world
oceans (Fig. 7). A region of significant rank correla-
tions emerges in the Pacific that corresponds geo-
graphically to the pattern of warming observed during
El Niño events (Cash et al. 2007).

Results also show that the fraction of susceptibles in
the population, and therefore the previous dynamics of
the disease, modulate the response to climate and
determine the size and accuracy of predicted out-
breaks. This is particularly apparent for warming
events of similar magnitude that are followed by out-
breaks of different sizes, in 1987 and 1992, respec-
tively. While the model for disease dynamics com-
pletely fails to predict this difference, the model with
SST January anomalies as a covariate succeeds. Not all
large outbreaks, however, are successfully predicted
by the model. In particular, the 2 epidemics following
the one in 1992, during the sustained warming condi-
tions of 1991 to 1995, are missing. Two possible expla-
nations suggest, in turn, future improvements to our
approach. First, the particular index of ENSO happens

to have lower values than in 1992 for January of those
particular years, even if the warming conditions pre-
vail in adjacent months. The use of a single month and
a single index may be replaced by a more robust rela-
tionship between ENSO and the residuals in the trans-
mission equation based on multiple months and/or
multiple indices. In particular, the geographic area of
the Pacific used for this index could be replaced by one
defined directly by the associations with cholera cases
and model residuals (Fig. 7 and Cash et al. 2007). Sec-
ond, immunity in the model may be too long-lasting,
precluding a sequence of extreme outbreaks from
occurring. Alternative mechanisms and representa-
tions for the difficult problem of immunity in cholera
are under investigation (King et al. in press).

The non-parametric component of our model, the
long-term variation in the transmission rate, sets a limit
to the prediction horizon after 1998 because of the
break in the relationship to river discharge. The reason
for this break remains an open question: Does it reflect
a change in the intrinsic dynamics of cholera or in con-
trol measures in this region? Does it reflect a change in
the climate measurements themselves? Or does it sim-
ply provide an example of correlation not implying
causation. Regardless of the answer, we have shown
that one feasible approach, in the absence of a good
model for the long-term transmission rate, is to assume
that this parameter remains constant for the prediction
interval, with reasonable results. Alternative models
for projecting βlt during the prediction interval should
be explored.
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Fig. 7. Rank correlations between September cholera cases and January SST anomalies in a global ocean grid. The black line 
indicates the 90% significance level
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Future improvements of our approach should also
examine how to incorporate regional climate variables
that mediate the ENSO effect on cholera in
Bangladesh. Previous results (Koelle et al. 2005) and
on-going studies with coupled ocean–atmosphere cli-
mate models (Cash et al. 2007) suggest that regional
flooding and precipitation should be considered.
Clearly, individual El Niño events can differ in their
effects in this region and determine, in part, the par-
ticular response of the disease to warming in the
Pacific. For example, the June-July-August (JJA) rain-
fall anomaly for the summer of 2003 (Fig. 6) is very
nearly the opposite of the 1976 to 2002 composite
warm–cold anomaly pattern (not shown). Thus, the
2002 El Niño is not only weaker, but appears to be
followed by different precipitation conditions in
Bangladesh than the 1997/1998 event. Under weak El
Niños and/or weak coupling between conditions in
the Pacific and those in the Indian Ocean, regional
drivers may be particularly important.

Another improvement might be found in the statisti-
cal model for the residuals as a function of ENSO.
While we have used a simple linear regression, it is
worth examining whether a non-linear relationship
and a differential effect of positive and negative anom-
alies give better results. Future cholera data may allow
us to examine the prediction of extreme events further,
since successful forecasting of their occurrence is not
necessarily implied by our results on the lack of
extreme outbreaks.

Finally, an early warning system should be based on
an ensemble of forecasts produced with >1 single
model, including the full spectrum from non-mecha-
nistic time series methods, such as seasonal autore-
gressive models (e.g. Chaves & Pascual 2006) and non-
linear maps based on attractor reconstruction (Dixon et
al. 1999, Pascual et al. 2000, Szeliga et al. 2003), to
mechanistic representations closer to the mathematical
models used in epidemiology with different types of
noise (Ionides et al. 2006). Our initial effort indicates
that an early warning system is achievable and worth
pursuing.
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