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The long-term patterns of malaria in the East African highlands typically involve not only a general upward

trend in cases but also a dramatic increase in the size of epidemic outbreaks. The role of climate variability

in driving epidemic cycles at interannual time scales remains controversial, in part because it has been seen

as conflicting with the alternative explanation of purely endogenous cycles exclusively generated by the

nonlinear dynamics of the disease. We analyse a long temporal record of monthly cases from 1970 to 2003

in a highland of western Kenya with both a time-series epidemiological model (time-series susceptible–

infected–recovered) and a statistical approach specifically developed for non-stationary patterns. Results

show that multiyear cycles of malaria outbreaks appear in the 1980s, concomitant with the timing of a

regime shift in the dynamics of cases; the cycles become more pronounced in the 1990s, when the coupling

between disease and rainfall is also stronger as the variance of rainfall increased at the frequencies of

coupling. Disease dynamics and climate forcing play complementary and interacting roles at different

temporal scales. Thus, these mechanisms should not be viewed as alternative and their interaction needs to

be integrated in the development of future predictive models.
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1. INTRODUCTION

Patterns of malaria resurgence have been documented for

several African highlands, raising pressing questions on

the underlying causes of increases in disease incidence in

these transition regions (Marimbu et al. 1993; Loevinsohn

1994; Kilian et al. 1999; Lindblade et al. 1999; Shanks

et al. 2000; Hay et al. 2002a). Importantly, these changing

patterns involve not only a general upward trend in cases

but also a dramatic increase in the size of epidemic

outbreaks over time. Thus, an understanding of malaria

dynamics in these regions requires consideration of both

epidemic cycles and longer-term trends, two aspects of

change that are typically considered separately.

In particular, the year-to-year variation in seasonal

epidemics, known as interannual variability, has been studied

for different African highlands. It has been shown that cycles

of periodicity longer than 1 year are present and it has been

proposed that these cycles are generated by the dynamics of

the disease itself (Hay et al. 2000). The argument rests on the

observation that the dynamics of simple epidemiological

models, known as SIR for susceptible, infected and recovered

population numbers, with parameters plausible for malaria,

have an endogenous period of ca 3 years consistent with that
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observed for a time series of cases in Kenya (Hay et al. 2000).

Although these intrinsic cycles decay to equilibrium in a

purely deterministic model, they are well known to persist in

the presence of noise (e.g. Alonso et al. 2007). Because they

result from the population dynamics of transmission and

immunity, they do not require an exogenous driver, such as

climate fluctuations. In contrast, a more recent study of

temporal patterns across multiple highlands concluded that

temperature and rainfall play an important role in the

interannual variability of malaria (Zhou et al. 2004). In this

case, a time-series modelling approach was used that is fully

non-mechanistic and, therefore, not directly interpretable in

the light of the processes that underlie disease dynamics. As a

result, these two opposite explanations for malaria’s multiyear

cycles are difficult to compare, and have been the subject of an

unresolved debate on the role of climate interannual

variability in the epidemic patterns of the disease (Hay et al.

2005). This debate has also questioned the evidence for a

significant increase in rainfall variability itself in recent times,

which underscores that disease cycles must increasingly be

understood in the context of non-stationary patterns in both

disease dynamics and environmental conditions.

In this paper, we re-examine the question of malaria’s

multiyear cycles with both epidemiological models and

statistical approaches specifically developed to handle non-

stationary patterns. We analyse a long temporal record

of malaria cases in the past three decades in a highland of

western Kenya. We show that both previously proposed

hypotheses, endogenous dynamics and exogenous environ-

mental factors, play a role in the temporal dynamics of the

disease, but do so at different temporal scales. Specifically,
This journal is q 2007 The Royal Society
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Figure 1. (a) Time series of cases at AHP. (b) The wavelet spectrum is shown with power increasing from blue to red colours.
The continuous line corresponds to the 5% significance level (§3). The areas within this line indicate significant variability at the
corresponding periods and times. A cycle of period four is apparent in the 1990s, accompanied by a shorter cycle of period
between one and two. This frequency is present earlier and is already significant in the 1980s, as best seen by following the crest
of the spectrum (white line) indicating the localization of local maxima in time and period. The bold continuous line is known as
the cone of influence and delimits the effect of the treatment of the boundaries; only patterns within this line are therefore
considered reliable. The malaria data have been square-root transformed to rescale the variance.
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rainfall exhibits a clear association with cycles of ca 2 and 3

years, while disease dynamics generates cycles of longer

period. An interaction between these two factors, rainfall

forcing and disease dynamics, is also described. Malaria’s

multiyear cycles become apparent in the 1980s and are most

pronounced in the 1990s, when the coupling between

disease and rainfall is also most evident and the variance of

rainfall at the frequencies of coupling becomes stronger.

These changes are concomitant with the timing of a regime

shift, a break point, in the dynamics of malaria at the

beginning of the 1980s, suggesting that the association

between malaria and rainfall is in part responsible for this

qualitative change in disease dynamics. However, a long-

term trend in transmission identified by the simple SIR

model indicates that other mechanisms are also at play. The

timing and possible roles of drug resistance, climate change

and land-use practices are discussed. A seasonal mechanism

for the role of rainfall is identified in which the ‘short’ rain

season plays a major role by influencing cases in the

following year.
2. RAINFALL AND MALARIA DATA
The malaria data consist of a monthly time series

described in Shanks et al. (2005b) from a tea estate in

western Kenya known as the African Highland Produce

(now the Findlay Farms). These records correspond to the

confirmed cases from 1970 to 2003 from positive blood

slides for symptomatic inpatients and outpatients,

recorded prospectively on a weekly basis. The plantation

itself consists of approximately 20 individual estates each

with a group of 500–1000 workers, plus their dependents.
Proc. R. Soc. B (2008)
We have aggregated the cases monthly for the analyses of

interannual variability (figure 1a). We refer to this time

series as AHP, for African Highland Produce.

There have been changes in computing the weekly cases

from the hospital and outpatient records over time, which

may have introduced a source of measurement error. For

this reason, a second malaria time series at an adjacent

plantation was also considered (this has already been the

subject of previous studies, e.g. Hay et al. 2000), as a basis for

comparison and discussion (figure S5 in the electronic

supplementary material). We refer to this time series as

BBK, for Brooke Bond Farms. Although the medical care is

from a separate system, it operates with very similar policies.

The local populations of the two plantations are of similar

size, but BBK consists of fewer cases because the records do

not include outpatients. The tea estates provide health care

for all employees and their dependents on the plantations;

this is unlikely to result in accessibility biases which can be

expected from ordinary health centre or hospital records.

The rainfall data consist of three monthly time series

for local meteorological stations provided by the Kenyan

Meteorological Department. (Figure S1 in the electronic

supplementary material.) The three stations are: Hail

Research Station (0822 0 S, 35816 0 E; altitude 6483 ft),

Kericho Chagaik Estate 0820 0 S, 35820 0 E; 6000 ft) and

Kaisugu Kericho (0819 0 S, 35822 0 E; 7000 ft). The first

time series starts in 1980, while the other two are available

from 1970. Therefore, we analyse an average monthly

time series obtained from the three datasets (1980–2003)

and the individual datasets (1970–2003). (See the legend

of figure S1 in the electronic supplementary material for

the treatment of missing data.)
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3. MATERIAL AND METHODS
(a) Wavelet power spectrum

In contrast to Fourier analysis, wavelet analysis is well suited

for the study of signals whose spectra change with time. This

time–frequency analysis of the signal provides information on

the different frequencies (i.e. the periodic components) as

time progresses (Torrence & Compo 1998; Cazelles et al.

2007). See Cazelles et al. (2007) for a detailed description of

the method and a summary of applications to disease and

ecological data.

The wavelet power spectrum (WPS) estimates the

distribution of variance between frequency f and different

time locations t. To compare the WPS with classical spectral

methods, the global wavelet spectrum is computed as time

average of the WPS for each frequency component.
(b) Wavelet cross-coherence

As given in Fourier analysis, the univariate WPS can be

extended to quantify statistical relationships between two

time series x(t) and y(t) by computing the wavelet coherency

Rx; yð f ; tÞZ
jhWx; yð f ; tÞij

jhWyð f ; tÞij
1=2$jhWyð f ; tÞij

1=2
;

where h i indicates smoothing in both time and frequency;

Wx( f, t) is the wavelet transform of series x(t); Wy( f, t) is the

wavelet transform of series y(t); and Wx; yð f ; tÞZWxð f ; tÞ$

W �
y ð f ; tÞ is the cross-WPS. The wavelet coherence provides

local information about where two non-stationary signals,

x(t) and y(t), are linearly correlated at a particular frequency

(or period). Rx,y( f, t) is equal to 1 when there is a perfect

linear relationship at a particular time and frequency between

the two signals (Cazelles et al. 2007).
(c) Wavelet significance

As with other time-series methods, it is crucial to assess the

statistical significance of the patterns exhibited by the wavelet

approach. To this end, bootstrap methods have been used to

quantify the statistical significance of the computed patterns.

The idea is to construct, from observed time series, control

datasets that share some properties with the original series,

but which are constructed under the following null

hypothesis: the variability of the observed time series or the

association between two time series is no different to that expected

from a purely random process. The construction of our control

datasets was performed by classical bootstrap (Efron &

Tibshirani 1994). By applying the wavelet analysis to this

control dataset, we estimated the probability distribution of

the wavelet quantities of interest under H0. Then, the original

values computed from the raw series can be compared with

these distributions under the null hypothesis, to extract, for

instance, the 99th or the 95th quantiles of these distributions.
(d) Regime shift

Methods to detect regime shifts seek to identify a point in time

that separates the time series into two segments with different

qualitative dynamics. Under the null hypothesis of no break

point (H0), a single model is appropriate to capture the

dynamics of the whole time series. The alternative hypothesis

(H1) consists of two models that differ before and after a break

pointm. A recently proposed approach applied to fisheries relies

on fitting a vector autoregressive model to a multidimensional

system for which multiple time series for interacting variables

are available (Solow & Beet 2005). Because a single time
Proc. R. Soc. B (2008)
series is available here and seasonality is clearly important for

infectious diseases such as malaria, we used instead a seasonal

autoregressive model (SAR; Brockwell & Davis 2002). Under

H0, we fit the model to the whole time series, selecting the

order of the autoregressive and seasonal parts using the Akaike

information criterion. Diagnostics and problems with over-

fitting are considered when selecting these orders. Under H1,

we considered break points occurring at all possible months.

For each considered break point m, we fit two SAR models,

one using the time-series data before the break point and the

other after the break point. The log likelihood of the two

model fit was computed for each break point m (figure S2 in

the electronic supplementary material). To test H0 against H1

(for a specific break point m), we used the likelihood ratio

(LR) statistic, defined as minus twice the difference between

the maximum log likelihood under H0 and that under H1. A

parametric bootstrap test was used to determine the

significance of this statistic (Efron & Tibshirani 1994;

Solow & Beet 2005), with the distribution of the LR statistic

generated from repeated fits of the null and alternative models

to simulated data produced with the model fitted under H0.

The significance level is given by the proportion of simulations

for which the LR statistic is larger than that observed for the

data (Solow & Beet 2005).
(e) The time-series susceptible–infected–recovered

model

Time-series susceptible–infected–recovered (TSIR) models

for infectious diseases consist of two main components. The

first is a procedure to reconstruct the time series of

susceptibles and the second is a transmission equation

(Finkenstadt & Grenfell 2000; Koelle & Pascual 2004).

Our model here is a simplification of the TSIRS (Time Series

Susceptible–Infectious–Recovered–Susceptible) model in

Koelle & Pascual (2004), originally formulated for diseases

with temporary immunity. Here, we consider that there is no

loss of immunity and that the total population is constant in

time with a constant turnover time Tof individuals in the tea

estate. Under the latter assumption, the reconstruction of

susceptibles St is straightforward

St ZStK1KCt CBKD
StK1

N
; ð1Þ

where Ct is the number of cases at time t; the constant D is the

number of total deaths per time interval obtained as N/T; and

B is the number of births per time interval, equal to D, since

the total population size N is constant. We assume that the

initial fraction of susceptible individuals is 1 consistent with

the observations of negligible levels of immunity to malaria in

the highlands in 1970. The transmission equation for the

dynamics of cases is given by

Ct Z btK1bseas

X
kZ1 : 9

CtKk

StK1

N

 !
3tK1; ð2Þ

where 3t is an error term; and the transmission rate b has two

components, a seasonal one, bseas, and a long-term bt
encompassing variability at longer time scales than seasonal.

We assume that infected individuals are able to transmit the

disease for a period of nine months (Hay et al. 2000). Because

bt is not specified but determined from the model fit itself, the

model is semi-parametric. Thus, we fit the model with the

semi-parametric approach described in Koelle & Pascual

(2004) and Koelle et al. (2005), using log-transformed



Table 1. Results of bootstrap tests for the presence of the 4-
year cycle in the dynamics of the SIR model with noise. (CN
indicates results for the simulated time series with correlated
noise, while white noise (WN) indicates results for the
simulated time series with uncorrelated noise. Different
windows in the WPS were considered: the interval of time
is specified in column 1; that for the period is fixed from 3.5 to
4.4 years. The average period (AvP, second column) of the
peak in the WPS was computed for the malaria data. All time
slices within a given window in the WPS were inspected for
the presence of a maximum. A maximum is defined as a peak
only if its p value was smaller than a threshold value (0.05).
Times with no peak or no significant peak were given a value
of zero and averaged as such. Then, the probability of finding
a significant peak in the considered window was determined
for the simulated time series (columns 3 and 4). This
probability is high for the time series as a whole (within the
cone of influence, for years 1974–1999). It increases from the
1970s to the 1990s and is higher for correlated noise than for
WN. The average p value of all points within a given window
was also computed (column 7) and the probability that this
value for the simulated time series is smaller than a given
threshold ( pZ0.05) was also computed (columns 5 and 6).
This indicated whether on average the probability of finding a
significant power in that window is high. The probabilities
again increase from the 1970s to the 1990s, and when noise is
correlated. Since these p values are averages, they vary with
the size of the window and are higher when a narrower period
band is considered ca 4 years.)

time AvP CN WN CN WN Pav

1974–1999 3.97 0.95 0.73 0.00 0.01 0.29
1975–1979 4.33 0.46 0.28 0.05 0.11 0.18
1977–1981 4.30 0.45 0.26 0.04 0.14 0.21
1979–1983 0 0.48 0.25 0.06 0.16 0.30
1981–1985 0 0.51 0.25 0.09 0.18 0.05
1983–1987 0 0.54 0.28 0.14 0.21 0.07
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malaria cases. The approach essentially consists of two steps:

(i) the fit of the transmission equation (2) using weighted

linear regression after a log transformation and (ii) the

smoothing of the residuals to obtain bt from the residuals of

the linear regression. The smoothing bandwidth h, which is

the same for the weighted regression and the smoothing of the

residuals, is chosen using cross-validation by removing one time

point at a time in the data and refitting the model. The value ofh

determines the shape of the trend in the transmission rate bt.

Besides seasonality itself, there are two places in (2) where

evidence for extrinsic forcing is reflected: bt and the error

terms 3t. We refer to these error terms as the residuals of the

model in the text. The variability in these two terms, bt and 3t,

reflects sources of interannual variability in the dynamics of

cases that are not captured by either the fluctuations of

susceptibles or changes in seasonal transmissibility.

(f ) TSIR stochastic simulations

To address whether the 4-year cycle observed in the data can

be generated by the dynamics of the fitted TSIR model in the

absence of forcing at shorter periods other than the seasonal

one, we simulated the model repeatedly by sampling the

residuals 3t with replacement. Thus, in these simulations, the

noise is uncorrelated and the circa-biennial cycles are no

longer present. For each simulated time series, we obtained the

wavelet spectrum of (the square-root transformed) cases and

determined whether significant power occurred within a given

window in the frequency–time domain. The specific quantities

used to assess the occurrence of variability at periods close to

four are described in the legend of table 1. To further assess the

possible interplay of intrinsic SIR dynamics with extrinsic

forcing at the circa-biennial scale, we generated surrogate time

series that have the same power spectrum than the residuals

but differ in their temporal order (Kaplan & Glass 1995). We

then simulated the fitted model with these surrogate residuals.

1985–1989 0 0.58 0.27 0.19 0.22 0.79
1987–1991 0 0.62 0.30 0.24 0.25 0.59
1989–1993 3.68 0.64 0.32 0.26 0.27 0.24
1991–1995 3.76 0.66 0.34 0.29 0.31 0.04
1993–1997 3.86 0.65 0.39 0.34 0.33 0.04
1995–1999 3.82 0.65 0.41 0.37 0.36 0.01
4. RESULTS
We begin by characterizing the dominant temporal scales

present in the interannual variability of malaria with a

WPS (§3). By contrast to the Fourier power spectrum,

which gives an average picture of the dominant period-

icities in the time series, the wavelet spectrum is localized

in time (Cazelles et al. 2007). Thus, this analysis is

especially well suited for patterns of variability that change

with time, such as transient cycles, allowing the identifi-

cation of not only dominant periods but also their timing.

Figure 1b shows that malaria cases in AHP exhibit

interannual variability around two main temporal scales

with respective periods of ca 2 and 4 years. Both these

cycles are most pronounced in the 1990s, while the former

is already apparent earlier on in the 1980s. An 8-year

period is also found in the late 1990s, although it lies

outside the ‘cone of influence’ and is therefore not

considered reliable. A similar pattern is found for cases

in BBK, except that the longer cycle has a shorter period of

ca 3 years (figure S5b in the electronic supplementary

material), as previously shown in Hay et al. (2000). As for

AHP, the power of these cycles is most intense in the

1990s. A longer cycle of 6 years is also apparent in the

BBK time series. The variability in both time series at

the ca 2-year frequency encompasses variability at period 2

or slightly greater than 2 years (e.g. in 1995–2000,

figure 1b), as well as a shorter period between 1 and 2
Proc. R. Soc. B (2008)
years (e.g. 1981–1986, figure 1b). For simplicity, we refer

hereafter to these components of variability as the circa-

biennial cycle.

To further characterize dynamic patterns in disease

incidence, we ask whether a significant change has

occurred in the type of qualitative dynamics at some

particular time in the last three decades. This type of

change is known in the literature as a regime shift or break

point (e.g. Ricker 1963; Solow & Beet 2005). Because

infectious diseases exhibit threshold behaviour, the

question of the existence of break points is particularly

relevant when conditions underlying transmission are

themselves likely to be non-stationary. Here, we adapt a

method previously applied to fisheries (Solow & Beet

2005) to take into consideration seasonality (§3). The

analysis shows that malaria dynamics at AHP exhibit a shift

at the beginning of the 1980s, with different dynamic

regimes before and after the statistically chosen and

significant June 1981 break point ( p!0.001; figure S2 in

the electronic supplementary material).

The timing of the break point corresponds with the

apparent changes in both the size of epidemics (figure 1a)
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and the patterns of seasonal and interannual variability,

with the appearance of the circa-biennial cycle in the

wavelet spectrum (figure 1b). Although the spectrum

suggests that both the circa-biennial and 4-year period

may have been already present in the early 1970s despite

the lower number of cases, this signal is too short and too

close to the boundaries (technically, outside the cone of

influence, figure 1b) to be reliable. What is clear is a

change in the pattern of variability from the end of the

1970s to the beginning of the 1980s, accompanying the

emergence of local epidemics.

Given these disease patterns, we can now examine a

mechanistic basis for both the cycles and the long-term

changes. To this end, we first address the endogenous

versus exogenous origin of the cycles with a simple TSIR

model that allows for long-term changes in transmission

(§3). Although a TSIR model is too simple, a represen-

tation of the more complex processes underlying the

dynamics of a vector-borne disease such as malaria (e.g.

Aron & May 1982; Dietz 1988; Koella 1991), we used it

here to follow up on the previous hypothesis that multiyear

cycles could be explained by the dominant cycles of SIR

dynamics (Hay et al. 2000). Evidence for this previous

hypothesis relied on the period of an SIR model with

parameters consistent with those in the malaria literature.

Here, we tested this hypothesis further by fitting the TSIR

model itself to the time-series data and asking whether it

could indeed capture the cycles observed in the data. In

the model, the transmission rate parameter (bt) is allowed

to vary in time in a non-specified fashion, with this

variation determined by fitting the model to the data. This

semi-mechanistic (semi-parametric) approach allows us to

identify evidence for extrinsic forcing by considering both

the variability in bt and in the residuals of the model, that

is, in the error terms reflecting the variability in the

transmission rate that is unaccounted for by the model

itself (Koelle & Pascual 2004; Koelle et al. 2005). Two key

questions are addressed with this approach. (i) Is there

evidence for a temporal trend in the transmission rate?

(ii) Are the observed dominant frequencies in malaria

cases captured by SIR dynamics? Figure 2a shows that a

long-term trend in transmission is identified by the model.

Figure 2b shows the wavelet spectrum of the residuals of

the model (equation (1); compare to figure 1b). While the

circa-biennial cycles are still evident in the residuals, the

longer, 4 years, cycle exhibits much lower power and

reduced significance (figure 2b).

These results suggest that the 4-year cycle involves the

endogenous dynamics of the disease while the shorter

circa-biennial one does not. To examine the dynamics of

the fitted TSIR model, we can consider three types of

simulations: (i) deterministic runs of the model (that is,

without noise), (ii) stochastic runs with uncorrelated,

white noise (WN), and (iii) stochastic runs with correlated

noise (CN). In the WN simulations, noise is included by

sampling with replacement from the residuals of the

model. In the CN simulations, surrogate time series of

error terms are obtained that conserve the power spectrum

(and therefore, the correlation structure) of the residuals

but not their temporal order (Kaplan & Glass 1995).

Variability in the simulated time series were then analysed

with wavelets to determine the presence of a significant

signal in specific windows of time and frequency (§3).

These analyses tell us whether the model is indeed capable
Proc. R. Soc. B (2008)
of generating a period close to 4 years, and whether

exogenous forcing, in the form of noise, interacts with the

endogenous dynamics of the disease in generating this

longer cycle. A purely deterministic model is unable to

generate a period of four cycle (results not shown), while

both types of stochastic simulations generated this cycle in

a significant number of runs (table 1). Interestingly, these

cycles are more frequent in the CN simulations.

Furthermore, they increase in likelihood from the 1970s

to the 1990s (table 1). These results indicate that noise

plays a role in generating the cycles, and that both forcing

at the circa-biennial scale and the higher transmission rate

of the 1990s facilitate this pattern.

The presence of the circa-biennial pattern in the

residuals of the TSIR model fit suggests that the shorter

cycles are driven exogenously (figure 2b). If this is the case,

then the temporal patterns observed for the cases should

reflect the variability of an environmental factor relevant to

the dynamics of malaria transmission. We investigated one

such factor, rainfall, at three local stations in the region

(figure 3a and electronic supplementary material, figure

S1). Figure 3b shows the patterns of interannual variability

for rainfall at the Chagaik station. The wavelet spectrum

exhibits a similarity to that of malaria cases for the short

periods between 1 and 3 years. In particular, dominant

periods are identified ca 2 years. There is an intensification

of the power at that scale during the 1990s, reflecting a

higher fraction of the variance in those modes. A period six

is also present in the rainfall spectrum. Similar patterns are

seen for a time series of average monthly rainfall across the

three stations (figure S3 in the electronic supplementary

material) and for the other rainfall stations individually

(results not shown). To quantitatively assess the corre-

spondence of the wavelet spectra for malaria and rainfall,

we obtained their cross-coherence spectrum (§3).

Figure 4a shows that there is strong and significant

cross-coherence between malaria cases at AHP and

average rainfall across the three stations, for the circa-

biennial scale. (A similar pattern is obtained for the

residuals of the model and rainfall, figure S4 in the

electronic supplementary material). This pattern is also

present for the Chagaik rainfall time series alone

(figure 4b). In addition, the coupling between these

malaria cases and rainfall changes over time, with no

significant cross-coherence in the 1970s (figure 4b). The

phase difference for the circa-biennial cycle shows that

rainfall anticipates malaria in the intervals of coupling with

a time lag of two to three months for 1995–2000 and a

shorter lag closer to zero in 1985–1990.

The analysis so far concerns only the interannual

variability of the disease. A role of rainfall in multiyear

cycles must find an explanation at the seasonal scale since

this environmental driver is, together with temperature,

one of the main potential influences on vector dynamics.

The average seasonal cycle at AHP exhibits two main

peaks per year: a small peak in February–March and a

larger peak typically in June–July (figure 5a). Rainfall in

the region also displays two distinct seasons, the October–

November–December short rains and the March–April–

May ‘long’ rains (figure 5b). Interestingly, accumulated

rainfall from November to January is significantly

correlated to total cases in the first peak, with a correlation

coefficient of 0.72 ( pZ0.0002; figure 5c). We considered

only the later part of the short rains because longer lags
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relative to cases would not be possible given the life history

of the vector. In turn, the second and main peak in cases is

significantly associated with the first peak in cases, with a

correlation coefficient of 0.59 ( pZ0.0032; figure 5d ).
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Similar patterns are found for the BBK time series (figure

S6 in the electronic supplementary material).

Finally, the analyses of interannual variability were

repeated for BBK; this supported the role of extrinsic
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forcing by rainfall. The residuals of the selected TSIR

model show variability at the circa-biennial cycle and at

the period three (figure S5 in the electronic supplementary

material). The localization of both these cycles in time and

frequency is similar to that of rainfall (compare with

figure 3b and electronic supplementary material, figure

S3). The cycle six loses its significance in the residuals

indicating a possible intrinsic origin. Because this period is

clearly present in the rainfall spectrum (figure 3b), and

shows significant cross-coherence between cases and

rainfall (not shown), it is difficult to assign a conclusive

origin to this longer cycle. However, the model does not

provide evidence for a long-term change in the trans-

mission rate since bt does not exhibit a clear trend in the

selected model. We also found no evidence in these data

for a significant qualitative shift in the dynamics. We

discuss below these differences with AHP.
5. DISCUSSION
Our results bring together two different perspectives that

have long been seen as alternative explanations for the

interannual variability of malaria in African highlands.

Both the endogenous and exogenous origins of multiyear

cycles are supported by our analyses of the AHP data but

for different temporal scales, respectively. The circa-

biennial cycle appears to be driven exogenously, while

the longer cycle of 4 years is consistent with endogenous

SIR dynamics, involving the processes of transmission and

immunity. One climatic driver, rainfall, was identified

whose interannual variability is coherent with that of
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malaria cases (and the model residuals) in both the time

and the frequency domains for the circa-biennial scale.

Interestingly, there is also evidence for the interplay of

exogenous and endogenous factors: simulations of the

fitted TSIR model suggest that forcing at the circa-

biennial scale can resonate with the dynamics of the

disease to facilitate the generation of 4-year cycles. The

stochastic dynamics of the disease should be explored

further with more realistic mathematical models speci-

fically formulated for malaria transmission.

The role of rainfall is further supported by the seasonal

findings for AHP. The short rains appear associated with

the small peak of malaria at the beginning of the following

year. This is important because the number of cases in this

first outbreak show themselves a significant correlation

with the number of cases later in the year. Thus,

anomalous rainfall in the short rains would display a

ripple effect and affect the total number of cases in the

following year. Interestingly, although the highest precipi-

tation occurs during the long rains, the short rains in

eastern Africa have been shown to exhibit a larger

degree of interannual variability relative to climatology

(Hastenrath et al. 1993; Clark et al. 2003). One striking

example is given by the short rains in 1997 which are

reported to have been 5–10 times the normal in many East

African locations (Clark et al. 2003; World Meteorological

Organization). Climate studies have also described the

correlation of the short rains to sea surface temperatures

(SSTs) in the Indian Ocean, with an association that varies

over interdecadal scales for East African coastal precipi-

tation (Clark et al. 2003). While the geographical focus of
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those studies differs from ours, results are reported to hold in

a larger region of eastern Africa. The described role of

rainfall described here should be investigated further in the

context of larger scale climate variability, in particular SST

in the Indian Ocean.

This first peak between January and March in the ‘dry

season’ is observed in some time series of malaria in the

region(e.g. Hay et al. 2002b), and may not beassociated with

Anopheles gambiae, the vector usually mentioned in the

context of Kericho (Malakooti et al. 1998; Shanks et al.

2005a,b). Africa’s main malaria vectors species, Anopheles

funestus, and several subspecies of A. gambiae employ

different habitats and consequently have differences in

seasonal prevalence. Where A. funestus uses more (semi-)

permanent, often swampy, water bodies and benefits from

surrounding vegetation such as grassy ponds, A. gambiae is

strongly associated with shallow temporary breeding sites

(Zahar 1985). Trends and changes between years in the

relative dominance of species have been documented: in

Kenya, for example, the introduction of artificial fish ponds

has been associated with A. funestus becoming more

dominant over a number of years (Lockhart et al. 1969),

and in Kericho itself, dramatic changes between A. gambiae

andA. funestuswereobserved in the 1940s (Heisch & Harper

1949), withA. funestus being incriminated as the cause of an

epidemic which started in March 1948. The early year

maximum (February) of this vector also transpires from

other locations in Kenya (Chandler et al. 1975). A better

understanding of the first peak, and therefore of the seasonal

cycle, will require an examination of this conjecture, a

challenging problem giving the extremely low densities
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of adult mosquito vectors in these regions (Koenraadt

et al. 2006).

There are similarities and differences between the two

time series: the results for the association between rainfall

and cases at the seasonal and circa-biennial scales are

consistent for both estates. The endogenous 4-year cycle

present at AHP contrasts with the 3-year rainfall driven

cycle at BBK. There is also evidence for a break point at

AHP when epidemics start in the 1980s; this is

complemented by a long-term upward trend in the

transmission rate. However, only hospitalized (inpatient)

cases are included in BBK, and thus considerably fewer

cases are reported for this estate (approx. half of those at

AHP). Furthermore, more effective antimalarials were

introduced at BBK after 1999; this seemed to keep the

number of cases consistently lower than that at AHP in the

following years (Shanks et al. 2005b). The lower incidence

at BBK could mask a regime shift in the 1980s and when

coupled to the overall decrease of cases in recent years may

explain the lack of detection of long-term change in

transmission. Because the fitting of the model requires a

log transformation (Koelle & Pascual 2004) and the

number of malaria cases at BBK is capped by admission

capacity of the hospital, the apparently smaller epidemics

at BBK may not be sufficient to reveal a change in bt. It is

possible that our findings could be re-evaluated when

revised and extended data for both tea estates become

available. Given that the patterns we have described are

consistent in their relationship with rainfall for both

estates, it is particularly urgent to gather more data from

the estate with both inpatients and outpatients and to
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compare the observed incidence in the tea plantations with

those in the highland region of Kenya.

The circa-biennial scale in our analyses comprises

variability between 1 and 2 years but also at a period

slightly longer than 2 years. This variation in the exact

localization of the cycle can result from a biennial cycle

combined with a bimodal seasonal pattern with two peaks

per year. Variation in the seasonal timing of the anomaly,

from one peak to the next, can introduce cycles both

shorter and longer than 2 years. We note that the latter

period is consistent with the so-called quasi-biennial

oscillation described for rainfall in the literature (e.g.

Kabanda & Jury 1999).

Epidemics and the multiyear cycles that modulate their

size are evident in the 1980s and become particularly

pronounced in the 1990s at AHP, a pattern consistent with

our finding of a regime shift at the beginning of the 1980s.

This shift can be interpreted as a significant qualitative

change in the dynamics, corresponding to the emergence

of larger epidemics. Two possible contributing

mechanisms are suggested by our analyses. The first one

is a change in the coupling between malaria and rainfall in

the last two decades. The second is a long-term trend in

the transmission rate of malaria identified by the TSIR

model. Given the simplicity of this model, we emphasize

that the change in this parameter could result from

different causes capable of effectively increasing local

transmission. The model itself cannot specify any given

mechanism per se. One possibility is the known increase in

drug resistance (Malakooti et al. 1998; Shanks et al.

2005b). Another possibility is an increase in the trans-

mission rate due to environmental change, including

higher temperatures (Pascual et al. 2006) and change in

mosquito life history mediated by land-use and agricul-

tural practices (Wilson et al. 1990; Lyimo & Koella 1992;

Lindblade et al. 2000; Koenraadt et al. 2004; Mutero et al.

2004; Kebede et al. 2005). Another possible driver of the

observed trend is increased human mobility between

highlands and endemic regions (Prothero 1965; Shanks

et al. 2005a). In particular, this may be the case for

Kericho since the production of the tea states relies on

migrant workforce.

It is probable that a combination of these factors, with

important synergies (e.g. Lindblade et al. 2000), are at play

behind the described trend. Regardless of origin, the trend in

transmission appears to interact with the interannual

dynamics, increasing the likelihood of the longer cycles

towards the end of time series. Future work should consider

how to fit more realistic models for vector-borne diseases to

the data, not only to revisit our findings but also to

specifically address different hypotheses about the under-

lying trend in bothcases and transmission.The development

of recent methods to fit continuous-time mathematical

models of infectious diseases with dynamical and measure-

ment noise provides a promising avenue (Ionides et al.

2006). Important aspects that are not accounted for in a

TSIR formulation relate to the dynamics of the vector, the

delay in the development of the pathogen and the complex-

ities of the duration of the infectious and immune states in

malaria. Moreover, simplifying assumptions in our model

included the treatment of population size as constant with a

fixed turnover rate. Consideration of different turnover rates

led to similar results. Although changing patterns of

immigration have been described for these highlands that
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are clearly important to transmission (Lindblade et al.

2000), time-series data on population sizes and immigration

patterns in the tea plantations are not available for the whole

time span of interest. Further modelling studies are

warranted; our results emphasize the importance of

addressing outbreak patterns and long-term change

together, from a dynamical perspective, if we are to

understand the shifting patterns of malaria epidemics in

transition regions. Climate change scenarios should

consider not just temperature but patterns of change in

rainfall variability.
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