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The Network Structure of Food Webs

Jennifer A. Dunne

Descriptions of food-web relationships first appeared more than a cen-
tury ago, and the quantitative analysis of the network structure of food
webs dates back several decades. Recent improvements in food-web data
collection and analysis methods, coupled with a resurgence of interdis-
ciplinary research on the topology of many kinds of “real-world” net-
works, have resulted in renewed interest in food-web structure. This
chapter reviews the history of the search for generalities in the struc-
ture of complex food webs, and discusses current and future research
trends. Analysis of food-web structure has used empirical and model-
ing approaches, and has been inspired both by questions from ecology
such as “What factors promote stability of complex ecosystems given
internal dynamics and external perturbations?” and questions from net-
work research such as “Do food webs display universal structure similar
to other types of networks?” Recent research has suggested that once
variable diversity and connectance are taken into account, there are uni-
versal coarse-grained characteristics of how trophic links and species
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defined according to trophic function are distributed within food webs.
In addition, aspects of food-web network structure have been shown to
strongly influence the robust functioning and dynamical persistence of
ecosystems.

1 INTRODUCTION

This chapter describes research that seeks to characterize and model the struc-
ture of food webs, complex networks of feeding (trophic) interactions among
diverse species in communities or ecosystems. In particular, I discuss studies
that search for generalities in the network structure, also referred to as topol-
ogy, of food webs. Over the last fifteen years there has been dramatic growth
in the field-based documentation of food webs, as well as a general increase in
data quality in terms of diversity and resolution. This is a welcome trend, and
provides fuel for further statistical assessment, model testing, and theory de-
velopment. This chapter reviews the history of and current trends in the data,
analyses, and models of food-web network structure. I attempt to be relatively
comprehensive within this narrow domain, but as with all reviews, some papers
and topics are not addressed. In the interest of focus and length, studies focused
on food-web dynamics are not covered here, although they have been used to ex-
plore dynamic constraints on structure and vice versa (Pimm and Lawton 1978;
McCann and Hastings 1997). Reviews of dynamical food-web models and their
uses and limitations (Lawton 1989; Drossel and McKane 2003; Dunne et al. 2005;
McKane and Drossel Chapter 9; Martinez and Bascompte Chapter 12), as well
as “network analyses” of flow networks, primarily applied to particular marine
or estuarine systems (Wulff et al. 1989; Christensen and Pauly 1993), can be
found elsewhere.

Research on food-web structure is but one example in a very broad cross-
disciplinary research agenda on the structure of all types of networks, both biotic
and abiotic (Strogatz 2001; Albert and Barabási 2002). Network research is often
couched in the framework and language of statistical mechanics and graph theory.
Indeed, research on food-web structure has foundations in graph theory (the
random graph theory of Erdös and Rényi 1960 as cited by Cohen 1990; see
also Cohen 1977b; Sugihara 1982; Kenny and Loehle 1991) as well as natural
history (the food web for Bear Island described by Summerhayes and Elton
1923). The chapter by Cartozo et al. (Chapter 3) goes into detail about how food-
web studies fit into the broader network topology framework, and it introduces
basic graph theory definitions and properties of interest. However, this review
is primarily situated within the history, language, and theory of ecology, and
given this context I generally use terms such as species rather than nodes and
feeding links rather than edges. The biological terms evoke a rich conceptual
history in ecology and connect food-web research to related areas of study, such
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as evolutionary theory and conservation biology. However, more technical graph-
theoretic terms do pop up, particularly in descriptions of more recent research.

The review is divided into three sections called “Early Phase: Pioneering
Research,” “Middle Phase: Critique and Reassessment,” and “Current Phase:
New Models, New Directions.” These phases correspond roughly to the late 1970s
through the 1980s (Early Phase), the 1990s (Middle Phase), and the first half
of the 2000s (Current Phase). In addition to many interesting questions, both
basic and applied, that structural food-web research has been used to explore, its
history provides a unique perspective on the interplay between theory, methods,
and data, and on the role of critique. While the phases and topics emphasized
within them are a subjective split of interrelated lines of research, they provide
a useful way to organize a rich body of literature. The Early Phase and parts of
the Middle Phase cover ground that is reviewed elsewhere (e.g., Lawton 1989;
Cohen et al. 1990a; Pimm et al. 1991; Hall and Rafaelli 1993, 1997). However,
a recent renewed interest in the network structure of food webs by ecologists as
well as by physicists, mathematicians, biologists, and social scientists suggests
that it would be wise to revisit early foundational work from a contemporary
perspective. The final section, “Related Topics and Future Directions,” discusses
relevant topics neglected by the three main sections and how those topics relate
to future research directions.

2 EARLY PHASE: PIONEERING RESEARCH

Descriptions of feeding relationships among species go back at least to the late
1800s (studies by Forbes from 1876 on, reprinted in 1977; Camerano 1880 as
cited by Cohen et al. 1990a). By the 1910s researchers began to produce im-
ages not unlike food-web figures seen today in textbooks, such as a network of
insect predators and parasites on cotton-feeding weevils (Pierce et al. 1912 as
cited by Pimm et al. 1991) and the hypothetical animal-oriented descriptions of
Shelford (1913). By the 1920s, the first relatively detailed empirical descriptions
of terrestrial (Summerhayes and Elton 1923, 1928) and marine (Hardy 1924)
food webs appeared. Elton (1927) coined the term food chain, and termed all the
food chains in a community a food cycle, which we now call a food web. Many
descriptions of food webs, both hypothetical and empirical, followed those early
efforts.

However, it was not until the late 1970s that quantitative, comparative re-
search on potential generalities in the network structure of food webs arose.
Cohen published the first collection of food webs in 1978, comprised of 30 webs
with binary links (i.e., links showing only the presence and direction of a feeding
relationship, with no weighting for flow or strength) compiled from the literature.
He considered 14 to be community webs, webs that attempt to be reasonably in-
clusive of species in a particular system, and 16 were sink webs, selective webs
that focus on one or more predator species, their prey, their preys’ prey, etc.
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There are also source webs, selective webs that focus on one or more prey species,
their predators, their predators’ predators, etc. Both then and now, species in
food webs, while often referring to actual biological species, in many cases rep-
resent other things: taxonomically related groups of species, all the way up to
whole kingdoms (mites, arthropods, fungi); mixed groups of species (zooplank-
ton); particular life-history stages (small-mouth bass young-of-year); parts of
species (leaves, fruit); and non-living organic matter (detritus). Throughout this
chapter, the term species will be used in the non-specific sense that includes all
of these types of groupings within food webs, and the term taxa will sometimes
be used in place of species.

In a strict sense, the trophic links in food webs are directed links, which
means that a feeding relationship is directional (i.e., A eats B). However, effects
of feeding move in both directions—A eating B has ecological and evolutionary
implications for both species, at least when both “species” are living. Food-web
interactions can be usefully represented as a matrix. The simplest way to build
such a matrix is for rows to represent consumers/predators and columns to rep-
resent resources/prey. A “1” is assigned to the cell at the intersection of row i
and column j if species i feeds on species j, and a “0” is assigned if species i does
not feed on species j. Alternatively, rows can represent resources and columns
consumers. Putting trophic relationships into a matrix format facilitates quan-
titative analysis of food-web structure. Larger datasets can be more efficiently
represented using a two-column format, in which the first column lists the num-
ber of a consumer, and the second column lists the number of one of the resource
species of that consumer.

2.1 COMPLEXITY-STABILITY AND FOOD-WEB STRUCTURE

Early collections of food webs provided, for better and for worse, empirical fod-
der for the complexity-stability debate. For several decades leading up to the
1970s, a dominant ecological paradigm was that complex communities are more
stable than simple ones (Odum 1953; MacArthur 1955; Elton 1958; Hutchinson
1959). The argument in favor of complexity giving rise to stability in ecological
communities was stated in a general way by MacArthur (1955), who hypothe-
sized that “a large number of paths through each species is necessary to reduce
the effects of overpopulation of one species.” He concluded that “stability in-
creases as the number of links increases” and that stability is easier to achieve in
more diverse assemblages of species, thus linking community stability with both
increased trophic links and increased numbers of species. This convention was
challenged by May in a seminal paper (1972) and book (1973) using dynami-
cal mathematical modeling methods. May conducted local stability analyses of
randomly assembled community matrices and demonstrated that network stabil-
ity decreases with complexity, following Gardner and Ashby (1970). May found
that simple, abstract communities of interacting species will tend to transition
sharply from stable to unstable behavior as the complexity of the system in-
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creases; in particular as the number of species (S), the connectance (C), or the
average interaction strength (i) increase beyond critical values. May formalized
this as a criterion that ecological communities near equilibrium will tend to be
stable if i(SC)1/2 < 1. In May’s framework, connectance refers to the probabil-
ity that any two species will interact with each other; in a more technical sense,
connectance refers to the percentage of non-zero elements in an interaction ma-
trix (Gardner and Ashby 1970). The measure S, the number of species in a food
web, or more generally, the number of nodes in a network, will appear repeatedly
throughout this review and will typically be referred to as species diversity or
richness. “Diversity” and “richness” can also be quantified using more complex
formulations not covered here.

Several papers since May (1972, 1973) have pointed out flaws and limitations
in his analysis (e.g., Lawlor 1978; Cohen and Newman 1985a; Taylor 1988; Law
and Blackford 1992; Haydon 1994). For example, patterns of species interactions
are not random, and varying such patterns can have a significant impact on
dynamics. However, May’s criterion and the general question of how diversity is
maintained in natural ecosystems provided a framework on which to hang some
readily accessible empirical data, namely the numbers of links and species in food
webs. How does this work? Given a particular interest in species diversity (S),
and assuming that average interaction strength (i) is constant, May’s criterion
suggests that communities can be stable given increasing diversity, as long as
connectance decreases. This can be empirically demonstrated using food-web
data in three similar ways, by showing that (1) C hyperbolically declines as S
increases, so that the product SC remains constant, (2) the ratio of links to
species (L/S), also referred to as link or linkage density, remains constant as S
increases, or (3) L plotted as a function of S on a log-log graph, producing a
power-law relation of the form L = aSb, displays an exponent of b = 1 (the slope
of the regression) indicating a linear relationship between L and S.

In an empirical framework, connectance is measured as the proportion of
potential links among species that are actually realized. The simplest way of
expressing this is C = L/S2 (directed connectance; Martinez 1991), where the
numerator gives the number of observed links and the denominator includes all
potential directed trophic links among S species, equal to S2. Food-web con-
nectance has also been measured in more complex ways that exclude particular
kinds of trophic links. For example, another measure is C = L/[S(S − 1)/2]
which excludes all cycles, also called loops (Rejmánek and Starý 1979). Within
food webs, cycles of length 1 (A eats A) are referred to as cannibalism, cycles
of length 2 (A eats B eats A) are referred to as mutual predation, and even
longer cycles are possible (e.g., A eats B eats C eats A). The S − 1 part of the
denominator excludes the main diagonal of an S by S matrix, thus eliminating
cannibalism links, and dividing S(S − 1) by 2 excludes all other cycles. Thus,
S(S−1)/2 constrains the zone of potential directed links in an S by S matrix to
a triangle on one side of the main diagonal. It is the equivalent of counting the
total number of possible undirected interactions (i.e., where “A interacts with B”
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could mean that A eats B, B eats A, or both eat each other) in an S by S matrix,
excluding intraspecific interactions, and thus is sometimes referred to as interac-
tive connectance. However, if cycles do occur in food webs, C = L/[S(S − 1)/2]
exaggerates connectance, since cycling links are counted in the numerator but
are excluded from the denominator. This can be avoided by calculating interac-
tive connectance based on undirected links, such that C = L/[S(S−1)] (Warren
1990; Martinez 1991). How do these expressions relate to May’s criterion and the
potential for demonstrating stability with increasing diversity? Given the form
C = L/S2, the hyperbolic decline of C with increasing S (so that SC is constant)
is mathematically equivalent to constant L/S, since SC = L/S is the same as
C = L/S2. Given the forms C = L/[S(S − 1)/2] or C = L/[S(S − 1)], the same
equivalence between the hyperbolic decline of C and constant L/S occurs under
the condition that S is large, that is, when (S−1)/S approximates 1 (Macdonald
1979). This means that when S is small (S < 20), different forms of C can alter
which hypothesis about variability of C is accepted or rejected (Martinez 1995).

Quickly following the publication of the first catalog of food webs (Cohen
1978), examples were published documenting all three ways of empirically cor-
roborating the potential for stability with increasing diversity, assuming constant
interaction strength (a big assumption that will be discussed briefly in Related
Topics and Future Directions). MacDonald (1979) analyzed Cohen’s data and
found that mean L/S of the 30 webs was 1.88 (SD = 0.27). Independently,
Rejmánek and Starý (1979) compiled and analyzed 31 plant-aphid-parasitoid
source webs and reported a hyperbolic relationship between S and C (using
C = L/[S(S − 1)/2]) with a central tendency of C = 3/S (all data points fell
between C = 2/S and C = 6/S) corresponding to L/S = 1.5 (MacDonald 1979).
Briand (1983) analyzed 40 community webs including 13 from Cohen (1978), and
using log-log regression analysis he found that trophic links increase as a nearly
linear function of S, with b = 1.10 (L = 1.3S1.10). In these and other early
studies (e.g., Pimm 1982; Auerbach 1984), the results seemed to indicate that
connectance decreases with species richness and L/S is approximately constant
with a value between 1 and 2. The ecological interpretation is that species tend
to eat the same small number of prey (1 to 2 species on average) regardless of
the diversity of the food web (Pimm 1982). Given May’s criterion, these results
provided empirical support for the possibility of stable, diverse ecosystems.

Ensuing studies tested these findings with new data sets and introduced
trophic aggregation. Expanding Briand’s 40 food webs, Cohen and Briand (1984)
reported for 62 webs that L/S is “roughly independent of variation in S” with
a value of 1.86 (SD = 0.07). Unlike previous studies, they used trophic species
aggregation (Briand and Cohen 1984; see also Sugihara 1982; Yodzis 1982), in
which species that share the same set of predators and prey in a particular
food web are lumped into a single trophic species. This was meant to reduce
methodological artifacts due to researchers’ tendencies to resolve higher trophic
level taxa more finely than lower trophic level taxa (Pimm 1982), which can add
noise to trends and bias results (Briand and Cohen 1984). Sufficiently convinced
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by the generality of the data that supported both scale invariance of L/S and
its value of ∼ 2, Cohen and Newman (1985b) began to refer to the relationship
as the link-species scaling law, and further corroborated it with an expanded set
of 113 webs (Cohen et al. 1986) that will be referred to throughout this chapter
as the 113 web catalog.

Using a separate set of 60 relatively well resolved insect-dominated food
webs, drawn from a catalog of 95 such webs (Schoenly et al. 1991), Sugihara et
al. (1989) reported SC (equivalent to L/S) as “roughly independent of species
number” for the subset of 41 webs with 10 or more species, ranging up to 87
species. While they did not use trophic species as the unit of analysis, they did
follow methods introduced by Martinez (1988) and conducted an aggregation
study of the 41 web subset, lumping species by trophic similarity until half of
the original species remained. While the data showed that SC “tended to fall
slightly with increasing aggregation,” they nevertheless concluded that SC was
robust to aggregation. The aggregation study and its conclusions were meant
to assuage concerns (Pimm 1982; Paine et al. 1988) that variable resolution
in available data might create false patterns. However, the aggregation criterion
used by Sugihara et al. (1989) resulted in about three-quarters of the insect webs
being aggregated only to the trophic species level, so like Cohen and Briand they
were primarily eliminating topological redundancy (Martinez 1993b). The 113
web catalog, the 60 insect webs, and other food webs were ultimately compiled
in the ECOWeB database in a machine-readable format to facilitate analyses by
other researchers (Cohen 1989).

2.2 EMPIRICAL REGULARITIES AND SCALE INVARIANCE

As the previous section suggests, a great deal of focus on constant linkage density
(L/S) resulted from its connection to fundamental theory regarding ecosystem
stability and diversity/complexity, a key ecological issue that continues to endure
(McCann 2001). However, the first collection of food webs was compiled not
to test the relationship between L/S and S, but to look for other empirical
regularities in the network structure of trophic interactions (Cohen 1978). Based
on 14 community webs, Cohen (1977a) reported a ratio of prey to predators of
∼ 3/4, constant across food webs with variable S. This ratio had been explored
previously in other empirical datasets (e.g., Evans and Murdoch 1968; Arnold
1972; Cameron 1972). Cohen (1977b) also found that most of the 30 sink and
community food webs are interval. This means that all of the species in a food
web can be placed in a fixed order on a line such that each predator’s set of prey
forms a single contiguous segment of that line. Intervality suggests that trophic
niche space can be represented by a single dimension. Why this might be the case,
or what the single dimension might represent, continues to be unclear (Williams
and Martinez 2000). Other types of graph-theoretic properties quantifying how
diets overlap in food webs such as triangulation have been explored (Sugihara
1982; Sugihara et al. 1989; Cattin et al. 2004).
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A great deal of research following Cohen (1977a,b) focused on patterns of
food-web network structure, and had more in common with Cohen’s initial search
for empirical regularities than the search for constant L/S in the service of
complexity-stability theory. From this viewpoint, L/S is just one of many prop-
erties of food-web structure, based on analysis of binary links, which may have a
general value or central tendency across food webs with varying diversity. These
types of food-web patterns, in which a property is found either to be constant, or
under a weaker standard to not change systematically as the number of species
across food webs changes, came to be referred to as scale-invariant patterns
(Briand and Cohen 1984) or scaling laws (Cohen and Newman 1985b). Such
scale-invariant patterns can be thought of as extremely general regularities that
are theoretically valid from the smallest food webs to food webs that comprise
the entire planet (Martinez and Lawton 1995).

Additional scale-invariant patterns found using early food-web data included:
previously mentioned predator-prey ratios; constant proportions of top species
(T, species with no predators), intermediate species (I, species with both preda-
tors and prey), and basal species (B, species with no prey), collectively called
species scaling laws (Briand and Cohen 1984); and constant proportions of T-I,
I-B, T-B, and I-I links between T, I, and B species, collectively called link scal-
ing laws (Cohen and Briand 1984). Other general properties of food webs were
thought to include: food chains are short (Elton 1927; Hutchinson 1959; Pimm
1982; Cohen et al. 1990a); cycling/looping is rare (Cohen and Newman 1985b);
compartments, or subwebs with many internal links that have few links to other
subwebs, are rare (Pimm and Lawton 1980); omnivory, or feeding at more than
one trophic level, is uncommon (Pimm and Lawton 1978); and webs tend to be
interval, with instances of intervality decreasing as S increases (Cohen 1977b;
Yodzis 1984; Cohen and Palka 1990). Most of these patterns were reported for
the 113 web catalog (Cohen et al. 1986, 1990). Select patterns, such as short
food chains, constant predator-prey ratio, and scale-invariant fractions of T, I,
and B species, were also documented in a subset of 41 of 60 insect webs with 10
or more species (Sugihara et al. 1989).

2.3 THE CASCADE MODEL

The many properties being proposed and explored threatened to become a kind
of stamp collection of food-web patterns, with no particular rhyme, reason, or
organizing principals. However, in a series of six papers published from 1985 to
1990 with the common title “A Stochastic Theory of Community Food Webs,”
Cohen and colleagues sought to unify food-web patterns through a simple model
called the cascade model. By ignoring dynamics and using a stochastic, binary
link approach similar to that of random graph theory (Erdös and Rényi 1960),
the cascade model sought to explain “the phenomenology of observed food web
structure, using a minimum of hypotheses” (Cohen et al. 1990a). A number of
other simple models for generating food-web structure were explored prior to
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the cascade model (Cohen 1978; Pimm 1982; Sugihara 1982; Pimm 1984; Yodzis
1984) and several variations were explored concurrently with the cascade model
(Cohen and Newman 1985b; Cohen 1990). Most performed poorly in predicting
empirical trends, and only one appeared to perform as well as the cascade model
(Cohen 1990).

The cascade model is based on two parameters, species richness S and link
density L/S. The model distributes species and feeding links stochastically, sub-
ject to two simple constraints: species are randomly placed in a one-dimensional
feeding hierarchy, and species can only feed on species that are lower in the
hierarchy than themselves (Box 1). This ensures a “triangular” matrix that pro-
hibits cycles or loops, including cannibalism. The cascade model is simple enough
that it is analytically tractable, although as a stochastic model it can also be
explored through computational approaches such as numerical simulation. To
explore whether the cascade model reproduced patterns of food-web structure
in 62 community webs, Cohen and Newman (1985b) assumed constant L/S and
they tuned the value of L/S to an average across the empirical data. They found
that the cascade model successfully reproduced the qualitative patterns of both
species and link scaling “laws” in all but the smallest webs. While it produced
quantitatively similar values to those observed for species and link proportions,
the cascade model was less successful in explaining variation in the data (Cohen
and Newman 1985b).

Cohen et al. (1985) also tested whether the cascade model could reproduce
the values of properties for particular food webs by tuning S and L/S to the
values for each of the 62 webs. They found that the cascade model described the
proportions of intermediate species (I) and B-I, I-I, and I-T links well. In the
expanded 113 web catalog, Cohen et al. (1986) found that the cascade model
made good predictions of numbers of food chains of each length (the frequency
distribution) in most webs, while describing mean chain lengths adequately and
chain-length variance less well. The cascade model also gave good qualitative
support, and reasonable quantitative support, to the frequency of interval webs
(Cohen and Palka 1990). In sum, the cascade model, a simple, stochastic, ana-
lytically tractable model, appeared remarkably successful at generating network
topology and trends similar to those observed in empirical data at both “coarse-
grained” and more detailed levels. It was suggested that the feeding hierarchy
assumption of the cascade model might reflect natural processes such as body size
constraints on feeding (Warren and Lawton 1987). Perhaps most importantly,
the cascade model provided the first explicit and quantitative hypothesis that
the network structure observed in early food-web data was not only non-random,
but might be governed by simple rules.
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3 MIDDLE PHASE: CRITIQUE AND REASSESSMENT

A rosy picture was thus painted by early practitioners. Empirical structural data
appeared to corroborate aspects of dynamical complexity-stability theory; net-
work structure appeared to be well-described by multiple empirical scaling laws;
and a simple, stochastic graph-theoretic model based on the link-species scal-
ing law and a seemingly ecologically reasonable principle of hierarchical feeding
predicted the phenomenology of food-web patterns. However, the hounds were
baying at the door. From the beginning, most of the purveyors of structural
food-web research pointed out some of the limitations in the data they analyzed.
The most obvious issue was that most of the food webs analyzed had very low
diversity compared to the biodiversity known to be present in ecosystems. The
webs of the 113 web catalog (Cohen et al. 1986) have 5 to 48 original species
(mean = 17) and 3 to 48 trophic species (mean = 17), while the 60 insect webs
in Sugihara et al. (1989) have 2 to 87 original species (mean = 22) and 2 to
54 trophic species (mean = 12). Another obvious issue was the highly uneven
resolution and representation of “species” in most early food webs. Many types
of organisms are aggregated, underrepresented, missing altogether, or misrepre-
sented as basal species because no prey items were recorded for them. The webs
of the 113 web catalog were culled from the literature, where they had been
put together by a wide array of researchers, using a variety of methods, and for
many different purposes, which did not include quantifying or testing structural
food-web patterns. The 113 web catalog data were also explicitly purged of can-
nibalistic links. Since the cascade model excluded cannibalism, this increased the
fit between the model and the data.

These and other methodological issues were taken up and amplified in several
serious, and to many, devastating critiques of the adequacy of the data, casting
doubt on the entire research program (Paine 1988; Polis 1991; Hall and Raf-
faelli 1993, 1997; Winemiller and Polis 1996). The most prominent early critique
was by Paine (1988), who suggested that “future connectance-based develop-
ment, even from sanitized webs, will not be enormously profitable,” due to the
possibility of significant spatial and temporal variation in diets as well as idiosyn-
crasies in how researchers ascribe trophic links. He suggested that a tendency of
researchers to describe trophic links more completely in small versus large webs,
given the greater effort required to describe interactions in speciose systems in
detail, could alone account for an apparent hyperbolic decline of connectance
(C) with diversity (S).

Meanwhile, potential problems with the “conventional” view of C and L/S
were emerging. Recall that the hyperbolic decline of C with S, constant L/S,
and log L versus log S showing a power-law exponent of 1 all express the same
thing: a linear increase of links with species in food webs. Thus, given May’s
stability criterion, constant L/S associated with increasingly low C in increas-
ingly diverse communities was thought to be a condition of stability. Empirical
evidence began to point towards trends of higher connectance than expected in
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apparently stable or persistent natural communities across gradients of diversity.
Cohen and colleagues, the strongest proponents of a linear relationship between
L and S, noted that they could not exclude a nonlinear relationship like that
hinted at by Briand (1983). When regressing log L versus log S for the 62 and
113 web catalogs, they found an exponent of b = 1.36. This makes L3/4 rather
than L1 proportional to S, meaning links increase faster than species (Cohen
and Briand 1984; Cohen et al. 1986; see also Schoener 1989). Based on relatively
detailed trophic information for 24 species in an English stream, Hildrew et al.
(1985) found higher C than that reported for all but 2 of 40 webs analyzed by
Briand (1983). Ten food webs based on detailed, highly resolved trophic interac-
tions among 36 species in an English pond also displayed high C (Warren 1989).
Those were the first published data explicitly collected to test food-web patterns.
A summary pond web including all species displayed higher C than less diverse
subwebs based on different habitats and sampling times. Detailed tropical fish
sink webs (i.e., sampling focused on all fish present, their gut contents, prey lists
for their prey, etc.) for swamps and streams in Costa Rica and Venezuela in-
cluded 58 to 104 species and showed a trend of increasing C with S (Winemiller
1989, 1990).

There were also hints that other scale-invariant scaling “laws” had been
overstated. A look at figures purporting to show scale-invariance of food-web
properties provides little evidence supporting the strong version of scale invari-
ance. In the classic scale invariance studies (Cohen and Briand 1984; Briand and
Cohen 1984), a typical figure, such as percent of top species plotted as a function
of S, displays a cloud of data points on which a line whose slope is constrained
to be zero is superimposed. The height of this horizontal line is determined by
the mean value of the property in question, calculated over all of the food webs.
No regression is calculated or plotted; instead, the approximate visual “fit” of
the line to the central tendency of the highly variable data is taken as evidence
of scale invariance. In effect, a weak, non-statistical finding of “no relationship
with S” was interpreted as evidence for a strong claim of the presence of scale-
invariant scaling laws (Hall and Raffaelli 1993). In addition, exceptions to other
food-web “generalities” started to appear. For example, detailed field-based food-
web data suggested that food chains could be longer than previously claimed,
and that omnivory and cannibalism might not be rare in some systems (Hildrew
et al. 1985; Sprules and Bowerman 1988; Warren 1989).

By the early 1990s, most researchers readily acknowledged problems with
the data and the potential impacts on food-web “laws,” particularly constant
L/S (Pimm et al. 1991). The question of where those problems might lead was
summed up cogently in an excellent early review by Lawton (1989): “Confronted
with limited data of highly variable quality, hardly any of which is really good,
food web studies face either hand-wringing paralysis, or cautious efforts to see
what can be discovered in the existing information. If nothing else, the latter
course of action should serve as a spur to gather more and better data, partic-
ularly if published webs reveal evidence of interesting regularities and patterns
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in nature. However, we have to accept that some of the patterns may eventually
prove to be artifacts of poor information.” Indeed, a new wave of empirical food-
web structure research was inspired by the inadequacy of the early data, the
intriguing possibility of either corroborating or overthrowing previous theory or
patterns, and the potential for describing new generalities. This research was fu-
eled by improved data and more sophisticated methods, particularly concerning
resolution of taxa, sampling effort, and sampling consistency.

3.1 IMPROVED DATA

An entirely new level of empirical detail characterizing diverse food webs was pre-
sented in 1991 in two seminal papers (Polis 1991; Martinez 1991). Polis (1991)
published a dizzying array of trophic information, compiled over nearly two
decades, for the Coachella Valley desert in California, whose biota include at
least 174 species of vascular plants, 138 vertebrate species, 55 arachnid species,
thousands of insect species including parasitoids, and unknown numbers of mi-
croorganisms, acari, and nematodes. Rather than trying to create a complete
food web including all species, he compiled a number of detailed subwebs (a soil
web, a gall web, a parasitoid web, a scorpion-focused web, a carnivore web, and a
predaceous arthropod web) to demonstrate the enormous trophic diversity and
complexity found in a type of ecosystem typically considered to be relatively
simple and species-poor. Each subweb is more diverse than many of the commu-
nity webs in the 113 web catalog and is also more complex in terms of number
and density of feeding interactions. On the basis of the subwebs and a simpli-
fied, aggregated 30 taxa web of the whole community, Polis (1991) concluded,
“most cataloged webs are oversimplified caricatures of actual communities” and
are “grossly incomplete representations of communities in terms of both diver-
sity and trophic connections.” Coachella Valley web properties include frequent
omnivory, cannibalism, and looping; a high degree of interaction among species
(i.e., L/S close to 10); and a nearly complete lack of top species, since few species
completely lack predators or parasites. These and other properties contradicted
accepted food-web patterns, and Polis (1991) suggested that “theorists are trying
to explain phenomena that do not exist.”

Martinez (1991) compiled a detailed community food web for Little Rock
Lake, Wisconsin, in one of the earliest studies to explicitly test food-web theory
and patterns (see also Martinez 1988; Warren 1988, 1989). By piecing together
diversity and trophic information from multiple investigators actively studying
the biota of Little Rock Lake, he was able to produce a relatively complete and
highly resolved food web of 182 taxa, most identified to the genus, species, or on-
togenetic life-stage level, including fishes, copepods, cladocera, rotifers, diptera
and other insects, mollusks, worms, porifera, algae, and cyanobacteria. The re-
sulting 182 original-species web (i.e., the web that includes whatever taxa and
links the original investigator reported) and the 93 trophic-species web gener-
ated from it (i.e., the web that results from trophic species aggregation of an
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original-species web) were by far the most diverse and complete depictions of
the community food web of a complex ecosystem yet published. Previously, the
largest community food webs described were an 87 original-species web of insects
associated with a felled oak log (Sugihara et al. 1989) and a 48 trophic-species
web of the Sonora Desert (Briand and Cohen 1987). In the 93 trophic-species
Little Rock Lake web, L/S = 11, looping is common, food chains are long, and
there are very few top species (see also Hildrew et al. 1985; Sprules and Bow-
erman 1988; Warren 1989; Polis 1991). This structure is quite different from
patterns observed in prior web catalogs and patterns predicted by the cascade
model (Cohen et al. 1990a).

While other detailed food webs were published at about the same time as
the Little Rock Lake food web (Martinez 1991), they either were compiled for
less diverse systems (Warren 1989); focused on subwebs based on particular sub-
habitats, species, or substrates (Winemiller 1989, 1990; Polis 1991; Schoenly et
al. 1991; Havens 1992), or had less even representation of taxa resulting from
strict criteria for designating links (Hall and Rafaelli 1991). Because the Little
Rock Lake web was based on expert knowledge developed over many years of
known or probable feeding relationships, it has been suggested that this web
overestimates feeding links compared to food webs based on a discrete set of
observations, for example, one- or few-times sampling of species and their gut
contents coupled with feeding trials (Hall and Raffaelli 1997). Indeed, “cumu-
lative” webs like the Little Rock Lake web have been shown to alter S, L, and
other web properties compared to “snapshot” webs (Schoenly and Cohen 1991;
and see Sampling Consistency section). For the purposes of discerning coarse-
grained patterns of network structure in food webs, such cumulative webs may
be more useful than snapshot webs. Approaches that narrowly constrain spatial
and temporal boundaries of sampling may miss structurally and dynamically
important species and links that are uncommon or rare (Martinez and Dunne
1998); for example, a little used food resource that becomes crucial during pe-
riods of scarcity of other resources. Regardless of the inconsistencies, flaws, and
limitations still to be found among the second wave of data, all of the datasets
mentioned, and others not mentioned, represent significant improvements over
the 113 web catalog in terms of field-based observation, higher and more even
resolution, and/or greater diversity. Most of these improved datasets were specif-
ically collected to test different methodological aspects of analysis of food-web
structure, as detailed below.

3.2 SPECIES AGGREGATION

In addition to setting a new standard for compiling community food-web data,
Martinez (1988, 1991) was the first researcher to look systematically at the ef-
fects of variable species resolution and aggregation on the network structure of
food webs. While trophic species aggregation (Cohen and Briand 1984) is based
on 100% trophic equivalence of species, the threshold for aggregation can be re-
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laxed to reduce the resolution of food-web data by progressively lumping taxa
based on less and less trophic similarity. There are different indices that can be
used to quantify similarity between objects, and the Jaccardian similarity index
(Jaccard 1900) is probably the best known and most widely used in food-web
research (Martinez 1988, 1991, 1993; Sugihara et al. 1989; Yodzis and Winemiller
1999). Within a food-web context, two basic choices are necessary for deciding
how to aggregate taxa: whether to use an additive versus multiplicative Jaccar-
dian index to define similarity between each pair of species, and how to define
the similarity of two aggregates based on pairwise similarities of species in the
aggregates (Yodzis and Winemiller 1999). Martinez (1988, 1991) used an addi-
tive Jaccard index to determine similarity of pairs of species in Little Rock Lake,
and then aggregated taxa based on an average-linkage method that calculates
similarity between two aggregates as the average of similarity indices across all
possible pairs between the aggregates. Interestingly, a later detailed study of
trophospecies aggregation methods concluded that out of 12 combinations of
the two Jaccard similarity indices and six cluster linkage methods, the additive
average-linkage method performed better than the other methods (Yodzis and
Winemiller 1999).

Martinez (1991) explicitly tested the hypothesis that patterns observed in
early food-web catalogs are an artifact of the low resolution and high aggrega-
tion of the data. Using the detailed Little Rock Lake food web, the aggregation
methods discussed, and three criteria for designating links between aggregates
(see Sampling Effort section), he created three sequences of increasingly aggre-
gated versions of the original 182 species web. The sequences end when species
in the aggregates share only 10% of their predators and prey, resulting in webs
with nine highly aggregated taxa. In effect, trophic aggregation reduces the Lit-
tle Rock Lake food web to levels of resolution and diversity comparable to those
in the 113 web catalog. Martinez then analyzed how different food-web proper-
ties changed, or do not change, with increasing aggregation and thus decreas-
ing S. For example, links per species, quite high in the 93 trophic-species web
(L/S = 11), drops steadily as aggregation increases, so that the 9 to 42 species
versions of the Little Rock Lake web display similar L/S (∼ 1 to 4) and diversity
to the webs in the 113 web catalog (Cohen et al. 1986). Chain-length statistics,
trophic-level statistics, and several proportions of links and species are also very
sensitive to aggregation (table 1), and display comparable values to earlier data
once diversity is reduced to similar levels. Based on these results, Martinez (1991)
argued that “most published food-web patterns appear to be artifacts of poorly
resolved data.” The main property relatively robust to increasing aggregation
and decreasing diversity is directed connectance, C = L/S2, which displays val-
ues that hover near 0.10 until S drops below ∼ 20. A trophic resolution study
performed on 11 of 60 insect webs (Sugihara et al. 1989; Schoenly et al. 1991)
with 20 or more trophic species produced similar results: compared to poorly
resolved versions of webs, higher resolved webs have higher L/S, I, I-I and mean
chain length, and lower T, B, and T-B (Martinez 1993b). Directed connectance,
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predator-prey ratio, and I-I link ratio are less sensitive to aggregation than other
properties.

Hall and Raffaelli (1991) also conducted an aggregation study, in this case
lumping species in a 92-species food web of the Ythan Estuary based on taxo-
nomic rather than trophic similarity. They created four increasingly aggregated
versions of the original web through qualitative decisions about how to lump tax-
onomically related taxa at each level. Similar to Martinez (1991) they found that
percent basal species increases and mean chain length decreases with aggregation
(lower S), but unlike Martinez (1991), most properties appear relatively insen-
sitive to aggregation. Their web, while more speciose than webs in the 113 web
catalog, was biased in similar ways, which may have impacted its sensitivity to
lumping. There is a large number of top species (26 = 28%), and a small number
of basal species (3 = 4%). Also, shorebirds are highly resolved, have no preda-
tors, and comprise more than a quarter of all taxa, while lower trophic level taxa
are increasingly aggregated. Sugihara et al. (1997) conducted both taxonomic
and trophic aggregation analyses on a set of 38 of 60 insect webs (Schoenly et al.
1991) and concluded that most properties except for L/S and B are insensitive
to changing S due to aggregation. The sensitivity of L/S in the insect webs was
counter to Sugihara et al. (1989) but in line with Martinez (1993b). The lack of
sensitivity in other properties is likely because the most aggregated versions of
the insect webs usually retained more than 50% of the original S. Sugihara et
al. (1997) acknowledged, “after a few food webs had been aggregated to 70–89%
of their original size, even the sturdiest food web properties became sensitive
to these coarser degrees of data resolution.” This corroborated results reported
by Martinez (1991, 1993b). A potentially confounding aspect of both taxonomic
aggregation analyses (Hall and Raffaelli 1991; Sugihara et al. 1997) is their use
of a maximum linkage criterion for designating links between aggregates, which
is a weak standard that tends to dampen changes in the value of structural
properties with S (see Sampling Effort section).

3.3 SAMPLING EFFORT

A question related to the effects of species aggregation on food-web structure
is, How do different observation thresholds for links affect observed patterns?
Winemiller (1989, 1990) was the first to explicitly quantify these sampling effort
effects. In constructing a set of detailed tropical fish sink webs, he recorded not
only the presence of feeding links but also the volumetric fraction of each prey
species in a predator’s diet, usually based on gut content analysis. This volumet-
ric fraction was used as an estimate of the relative strength of the predator-prey
interaction, which then allowed the construction of webs that include all links
versus webs that exclude “weak” trophic links. Winemiller (1989), who reported
a strong positive relationship between C and S when all links are included, found
that even when links representing < 1% of gut contents are excluded, there is
still a slight positive relationship. Using a range of link thresholds from 0 to 4.5%,
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Winemiller (1990) found that food-web properties are very sensitive to changing
thresholds of link inclusion, with rapid changes between 0 and 1% thresholds
that level off as thresholds approach 4.5%. Various food-web properties based on
early catalogs look more like values observed for the detailed fish food webs at
4 or 4.5% link exclusion thresholds, suggesting that “food-web diagrams taken
from the literature tend to depict only the strongest feeding interactions” (Wine-
miller 1990). Connectance increases as more links are included. Goldwasser and
Roughgarden (1997) also found that C increases as they include rarer diet items
in a food web focused on Anolis lizards on the island of St. Martin. In gen-
eral, L/S decreases in its sensitivity to S with increasing link thresholds, and
the mean value of L/S also decreases (Winemiller 1990; Tavares-Cromar and
Williams 1996; Bersier et al. 1999).

Martinez looked at a slightly different aspect of link threshold effects on
food-web structure by examining different criteria for assigning a feeding link
between aggregates of species in resolution studies of the Little Rock Lake food
web (Martinez 1991) and 11 insect webs (Schoenly et al. 1991) with 20 or more
trophic species (Martinez 1993b). The strictest criterion is minimum linkage,
which requires that every species in an aggregate be linked to every member
of another aggregate for them to be linked. The weakest criterion is maximum
linkage, which requires that only one member of each aggregate share a link
for them to be linked. An average linkage criterion rests between the two; for
example, two aggregates are linked if half their species share links. For all of the
webs examined, many food-web properties are quite sensitive to linkage criteria,
especially to minimum and average criteria (Martinez 1991, 1993b). Maximum
linkage generally impacts the values of food-web properties the least across a
range of aggregation. Some structural properties are more sensitive to linkage
criterion choice than to aggregation. This means that webs with similar S display
a wider range of values across different linkage criteria than cases in which S is
allowed to vary for a particular linkage criterion (table 1).

Sampling effort potentially impacts the inclusion of both links and species
in food webs. For example, source webs (one or more basal species, their con-
sumers, their consumers’ consumers, etc.) are easier to compile than community
webs, but, by definition, undersample species and links of the community within
which they are embedded. About half of the 60 insect webs analyzed by Sugihara
et al. (1989) and reanalyzed elsewhere have only a single basal “species” (often
carrion or dung) and are, in effect, source webs. Detailed community food webs
have been used to show that many properties are indeed sensitive to the inclusion
of increasing numbers of source species (Hawkins et al. 1997); for example L/S
tends to increase. The study that perhaps best captures the impacts of sampling
effort as it might actually manifest in field observations was conducted by Mar-
tinez et al. (1999). They analyzed a detailed grass source web (10 grass species
plus 77 endophytic insect species, including herbivores and parasitoids, living
inside the grass stems) that included data on the frequency with which each
consumer and each feeding relationship were observed. They simulated increases
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TABLE 1 Summary of sensitivity of selected food-web properties in the Little Rock
Lake food web (Martinez 1991, table 2) to species aggregation and linkage criteria.
For aggregation, High refers to a large and clear systematic change across variable S,
Medium refers to a substantial change, and Low refers to a relatively small change. For
linkage criteria, High means that the property is more sensitive to change in linkage
criteria than to aggregation, Medium means that the sensitivity of the property is
similar to both linkage criteria and aggregation, and Low means that the property
is less sensitive to linkage criteria than to aggregation. The last seven properties are
proportions relative to the total number of species in the web (Top, Intermediate, Basal)
or the total number of links in the web (T-I, T-B, I-I, I-B).

Property Sensitivity to Sensitivity to
Aggregation Linkage Criteria

Interactive connectance Medium High
Directed connectance Low Medium
L/S High Low
SC High Low
Average chain length Medium Low
Maximum chain length High Medium
Predator/prey ratio Low Medium
Top species High High
Intermediate species Low Medium
Basal species High Medium
T-I links High High
T-B links High High
I-I links Low High
I-B links Medium Medium

in sampling effort in terms of inclusion of both links and species in different
versions of the food web, and looked at the impacts on observed connectance.
In this case, directed connectance initially decreases with lower thresholds for
including species and links, but quickly reaches an asymptote beyond which C
changes very little with increasing sampling effort. This asymptote only appears
among trophic-species versions of the food webs, but closely approximates C of
the original-species web.

3.4 SAMPLING CONSISTENCY

One of the critiques of the 113 web catalog was that sampling methodology var-
ied widely. The first researcher to address this issue explicitly in the context of
testing structural patterns was Havens (1992). He constructed food webs repre-
senting the pelagic communities of 50 small lakes and ponds in the Adirondacks,
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New York, using consistent sampling methods and identical linkage criteria. The
number of taxa ranges from 10 to 74, and they are resolved to the genus, species,
or ontogenetic life-history stage level. Havens used a method that can be referred
to as “subsampling from a metaweb.” Here, metaweb refers to a master web that
includes all of the taxa found among multiple similar habitats and all possible
feeding links if all of the species co-occurred in a single habitat. In this case, the
metaweb includes 220 taxa found across all of the lakes and feeding links among
them (see also Sprules and Bowerman 1988). The 50 individual webs were cre-
ated using species lists for each lake and then deriving feeding interactions from
the metaweb. The main drawback of this approach is that it assumes that preda-
tor selectivity does not vary among habitats (Havens 1992); that is, if species A
eats species B in lake X, A will also eat B if they are both present in lake Y.
While the strength or magnitude of interactions between A and B will almost
certainly vary from lake to lake, it is less likely that the presence of particular
feeding interactions will vary (Havens 1992), especially when the food webs are
of the same habitat type and within the same climatic and geographic region.

Havens (1992) found that L/S increases fourfold over the range of diversity
of the webs, providing more evidence that constant L/S is related to deficien-
cies in the earlier data and “does not reflect a real ecological trend.” He also
reported that fractions of species and links show no significant trends with S,
and concluded that those properties are scale invariant, consistent with Cohen
and Briand (1984). However, compared to empirical values (Briand and Cohen
1984) and values predicted by the cascade model (Cohen and Newman 1985b),
the lake food webs display central tendencies much lower for T and T-I (similar
to Warren 1989; Martinez 1991) and higher for B and I-B.

Havens’s approach is only one way to create multiple food webs in a con-
sistent manner. Another common method is simply to chose a type of habitat,
and to create food webs for particular instances of that habitat (e.g., multiple
streams within a region) using consistent field sampling and trophic link attribu-
tion methods at each site (Winemiller 1990; Townsend et al. 1998; Schmid-Araya
et al. 2002). This approach has also been used to create multiple time-specific
webs at particular sites in order to look at temporal resolution issues (Baird and
Ulanowicz 1989; Schoenly and Cohen 1991; Tavares-Cromar and Williams 1996).
Composite webs that integrate over time will necessarily have greater S and L
than the time-specific webs on which they are based. They have also been used to
demonstrate the sensitivity of other structural food-web properties to temporal
variation and integration (Schoenly and Cohen 1991; Deb 1995; Tavares-Cromar
and Williams 1996; Thompson and Townsend 1999).

3.5 ABANDON SHIP?

Improved data, as well as studies that looked at species aggregation, sampling
effort, and sampling consistency indicated that many conventionally accepted
patterns of food-web structure, especially constant L/S, were almost certainly
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artifacts of weak data or methodology. For many researchers, the array of issues
being brought to light was enough for them to wash their hands of the entire
research program. This attitude was reflected in the change in focus between
the first and second major international symposia on food-web research. The
first symposium, sponsored by the U.S. Department of Energy and organized
by Oak Ridge National Laboratory, occurred in October 1982 and was followed
a year later by a proceedings (De Angelis et al. 1983). This landmark meeting
was dominated by talks relating to theory, dynamical and structural models, and
topological patterns. The second major symposium on food webs, convened in
September 1993 at Colorado State University’s Pingree Park Conference Center,
with a proceedings following a few years later (Polis and Winemiller 1996), was
dominated by talks on empirical and experimental research. While several of the
talks and resulting book chapters discussed food-web structure in the context
of particular systems, there was almost no treatment of general properties or
patterns, apart from a review of criticisms of such research in the introduction
(Winemiller and Polis 1996). As Paine notes in the preface, “web metrics. . .are
pleasantly inconspicuous.” Even dynamical modeling was sidelined—of 37 main
chapters, only 4 focused primarily on dynamical models (Abrams 1996; Arditi
and Michalski 1996; Hastings 1996; Yodzis 1996). The overwhelming attention on
experimentation and describing the impact of variability (e.g., spatial, temporal,
environmental, habitat) on the dynamics of particular food webs or sets of trophic
relationships came as a relief to many dissatisfied with the earlier work, which was
often viewed as a gross oversimplification of the natural world. The pendulum in
food-web research had swung sharply in favor of the WIWAC school—the “world
is infinitely wonderful and complex” (Lawton 1995), and away from the search
for generalities.

Nevertheless, over the course of the 1990s, ecologists continued to put to-
gether improved, detailed, field-based data on food-web network structure. An
article co-authored by 24 top food-web researchers suggested a variety of ways
for “improving food webs” with a focus on better data collection (Cohen et al.
1993). However, there is no universal correct way to compile a food web: all food
webs will reflect the focus of researchers on particular methods, taxa, habitats,
questions, and spatial and temporal boundaries and scales. The promise that
structural food-web research holds is that by stepping far enough back from
noisy details of particular systems, coarse-grained attributes and generalities
will emerge, despite inherent variability and noise associated both with particu-
lar systems and with particular research approaches and agendas. In effect, this
is a statistical mechanics approach to ecology. In this spirit, a few researchers
continued to explore food-web patterns to call into question or corroborate old
“laws” and theory, and also to offer alternative hypotheses about the network
structure of food webs based on improved data and/or statistical analyses.
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3.6 SCALE DEPENDENCE

One alternative hypothesis to scale-invariant patterns is “scale dependence.” In
his Ecological Society of America MacArthur Award Lecture article, Schoener
(1989) suggested that “S-independence” of food-web properties including L/S,
prey-predator ratios, and fractions of basal and top species was unlikely in both
principle and practice. In other words, rather than being scale-invariant, many
food-web patterns are likely to be scale-dependent. Schoener explored a simple
conceptual model based on an extension of Pimm’s (1982) notion that species
should be limited in the number of prey species they can consume. Schoener sug-
gested that not only may the number of prey species (generality) be constrained,
but the number of predator species against which a species can defend (vulnera-
bility) may also be constrained. He suggested that as food-web S increases, the
vulnerability of a species also increases. The consequences of these basic assump-
tions include scale-dependence of many food-web properties. Schoener (1989)
tested those predictions with a statistical analysis, which Cohen and colleagues
had avoided, of 98 webs drawn from the 113 web catalog and from source papers
for particular webs in the catalog. He found the data generally agreed with the
S-dependent predictions, not with scale-invariance. The data also supported the
basic assumptions of his conceptual model: generality does not increase with S,
while vulnerability does.

Several studies previously mentioned utilized improved data as well as novel
methodological analyses and found that many purported scale-invariant prop-
erties of food webs appeared to be attributes of poorly resolved webs, with
quite different values observed in highly resolved or sampled webs (Warren 1989,
1990; Winemiller 1990, 1991; Martinez 1991, 1993b; Hall and Rafaelli 1991; Polis
1991; Hawkins et al. 1997). This provided some empirical support for “scale-
dependence” of most food-web properties. Additional, more explicit support
came in the form of reanalysis of Havens’ 50 lake webs (Martinez 1993a) and
subsets of Schoenly et al.’s (1991) insect webs (Martinez 1994). The reanalyses,
which used more appropriate statistical tests and/or trophic species aggregation,
reported significant scale-dependent trends of species and link proportions across
food webs, similar to what Schoener (1989) found in his reanalysis of the 113
web catalog. The scale-dependent trends reported by Martinez (1993a, 1994)
were actually present in data originally used to support scale invariance, but ei-
ther the trends were weak and lacked significance, or significance tests were not
conducted properly, if at all (Havens 1992; Sugihara et al. 1989). More sophisti-
cated statistical methods based on generalized linear models also suggested that
fractions of species are sensitive to S, based on a subset of 61 of the insect webs
(Murtaugh and Kollath 1997).

An analysis of observed patterns of species fractions (T, I, B) at local scales
and expected patterns of species fractions at regional and global scales based on
biodiversity estimates suggests a limit to food-web scale dependence (Martinez
and Lawton 1995). Empirical webs with less than a hundred species appear to
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display strong scale dependence. However, hypothetical webs with more than a
thousand species appear to display scale invariance due to unchanging fractions
of species: no top species (due to cannibalism, parasitism, mutual predation,
and longer loops), a small percentage of basal species, and a large majority of
intermediate species. In essence, given that researchers are unlikely to compile
detailed food webs with more than a thousand species, the food webs they can
describe are likely to exhibit scale dependence. Using a similar concept, Bersier
and Sugihara (1997) attempted to rehabilitate scale invariance for webs with S
of ∼ 10 to 100, arguing that species and link fractions in 60 insect food webs
(Sugihara et al. 1989) display scaling regions: one region of scale dependence
and one region of scale invariance. However, in this case, webs containing 12 or
fewer original species or 7 or fewer trophic species are suggested to exhibit scale
dependence, while webs with more species are suggested to exhibit scale invari-
ance. These cut-off points are one to two orders of magnitude lower than those
suggested by Martinez and Lawton (1995). At this point, the massaging and re-
massaging of the Schoenly et al. (1991) insect web catalog is more confusing than
convincing. Regardless of what is thought of the various statistical approaches,
the fact that the insect webs are not comprehensive community webs, but are
mostly source/substrate webs with mean original S of 22 and mean trophic S
of 12, should lessen their importance in the overall assessment. The balance of
evidence suggests that early patterns of scale invariance are artifacts of poorly
resolved data, and that scale dependence of most properties is likely to be ob-
served across higher quality datasets, at least within the range of diversity (i.e.,
S < 1000) that ecologists are likely to be able to sample in detail.

3.7 CONSTANT CONNECTANCE

Just as improved data and methodological analyses highlighted problems with
scale invariance, they also showed problems with constant L/S and hyperbolic
decline of C with S, as discussed previously. L/S was shown to be much greater
than 2 for a variety of improved food-web datasets (e.g., Polis 1991; Martinez
1991; Hall and Raffaelli 1991). A set of fish sink webs with ∼ 20 − 120 S dis-
played strongly increasing C with S, although when links representing 1% or
less of diet were excluded, C increased only slightly with S (Winemiller 1989).
Several aggregation and sampling effort analyses suggested that C is relatively
robust to changes in S (Warren 1989; Martinez 1991, 1993b; Martinez et al. 1997)
while L/S is not, except possibly at low levels of link sampling (Bersier et al.
1999). Consonant with the former studies, an alternative hypothesis of “constant
connectance” emerged out of new data and analyses (Martinez 1992). The math-
ematical difference between constant C and constant L/S can be simply stated
using a log-log graph of links as a function of species (fig. 1). As discussed previ-
ously, if a regression can be reasonably fit to the data, it produces a power law of
the form L = aSb. In the case of the link-species scaling law, b = 1, which means
that L = aS, L/S = a, and thus L/S (directed connectancce) is constant. In



48 The Network Structure of Food Webs

the case of constant connectance, b = 2, which means that L = aS2, L/S2 = a,
and thus L/S2 (directed connectance) is constant. Instead of L/S being con-
stant, L/S increases as a fixed proportion of S. One ecological interpretation of
constant connectance is that consumers are likely to exploit an approximately
constant fraction of available prey species, so as diversity increases, the number
of links per species increases (Warren 1990).

Do data support constant connectance? For a set of 15 webs derived from an
English pond (11 habitat webs, 4 arbitrary subwebs, and a summary composite
web), Warren (1990) reported b = 2, and more specifically L = 0.24S2. He
suggested that within a community, “increasing S should produce a curvilinear
relationship whereby L is roughly proportional to S2.” He hypothesized that the
value of that proportionality will be greater for subwebs dominated by generalist
feeders and lower for those dominated by specialists. Warren (1990) suggested
that looking at the L − S relationship across communities would result in a
great degree of scatter and only a slight upward trend due to sampling effects,
a hypothesis that appeared consistent with previous food-web data. However,
another study hypothesized that the proportionality of L with S2 does hold
across communities (Martinez 1992). Trophic species versions of 175 webs display
b = 1.54 (R2 = 0.93), smaller than b = 2 expected for constant C (Martinez
1992). The 175 webs, which include the 113 web catalog, the 60 insect webs, the
Little Rock Lake food web, and a food web of the island of St. Martin (Goldwasser
and Roughgarden 1993), are dominated by the earlier, more poorly resolved data.
To address this, Martinez (1992) conducted an analysis of a subset of the 12 most
“credible” datasets in terms of resolution and completeness, representing the
whole range of S (2 to 93), and found b = 1.73 (R2 = 0.98). Further distillation
of the data by eliminating food webs with less than 10 species resulted in 5 webs
with b = 2.04 (R2 = 0.95).

Based on these and other analyses, Martinez (1992) argued that the true
value of b in highly resolved webs across a wide range of S is likely closer to 2 than
to 1, suggesting “roughly constant connectance within relatively homogeneous
environments.” If connectance is roughly constant (b ≈ 2), mean C is quantified
by the value of a, which is 0.014 (SD = 0.06) for all 175 webs and 0.11 (SD =
0.03) for the five web subset, suggesting that 0.11 is the best estimate of mean
C. This indicates that approximately 10% of all possible feeding links, including
cannibalism and other loops, are actually realized in food webs compiled “within”
habitats where species are likely to be relatively well mixed. Food webs compiled
across obvious environmental boundaries (e.g., a lake and its surroundings) are
likely to have lower C, since there will be species that never encounter one
another and thus have no chance of a feeding relationship. Also, connectance
will vary to the degree that specialists, generalists, or omnivores are prevalent
(Warren 1990).

The hypothesis of constant connectance, or b = 2, has been called into
question by a few later studies, although in some cases a second look suggests
otherwise. Havens (1992) reported b = 1.4 for 50 pelagic lake food webs. Re-
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analysis without forcing the regression through 0 showed that the data display
b = 1.9 (R2 = 0.92) (Martinez 1993a) and mean C of 0.10 (SD = 0.02). These
results corroborate prior predictions of the likely values of both a and b (Martinez
1992). Using a set of 22 stream food webs with 22 to 212 species, Schmid-Araya
et al. (2002) reported b = 1.30, lower than the value of b = 1.36 for the 113 web
catalog, as well as relatively low C that ranges from 0.03 to 0.12. The webs focus
on algae, micro- and in some cases meiofauna, and macroinvertebrates, with ver-
tebrates excluded. It is unclear how many and what types of vertebrates might
be a part of any of the food webs. The exclusion of higher trophic-level taxa,
such as generalist opportunistic feeders on invertebrates, would tend to decrease
C and could also lower the value of b. However, it may be that low mean C and
different scaling of C are characteristic of stream webs.

Figure 1 shows the relationship between links and species for 19 relatively
diverse food webs from a variety of habitats (e.g., pond, lake, stream, desert,
grassland, rainforest, coral reef, marine shelf), with trophic species of 25 to 172
(refer to Dunne et al. 2002b, 2004 for information on individual webs). For this
set of data, b = 1.5, but there is a large amount of scatter (R2 = 0.68) (see also
Montoya and Solé 2003). Directed connectance ranges from 0.03 to 0.3, with a
mean of 0.13. The regression line for the data does not deviate strongly from the
predicted line for constant connectance, but does obviously deviate from the line
predicted by the link-species scaling law (fig. 1). In any case, these data are clearly
too variable to convincingly demonstrate a particular L − S relationship, other
than not supporting constant L/S, perhaps because they represent such widely
different ecosystems and methods (Warren 1990). Other studies have questioned
the fit of constant connectance to empirical data, for example by conducting
more appropriate statistical analysis of existing data (Murtaugh et al. 1998) or
by doing detailed studies of consumer guild diets (Winemiller et al. 2001). The
latter approach may not be a good way to test for constant connectance since
it focuses on the trophic breadth of particular kinds of organisms, and C is a
global property of a food web calculated across many types of species. Whether
values of b are closer to 1.5 or 2, directed connectance for resolved community
webs appears constrained to ∼ 0.03 to 0.3 out of a possible range of 0 to 1. The
central tendency across communities appears to be ∼ 0.10 to 0.15, much lower
than a null expectation of 0.5 (Kenny and Loehle 1991).

4 CURRENT PHASE: NEW MODELS, NEW DIRECTIONS

The cascade model was largely neglected during the 1990s as researchers either
focused on methodological issues or veered entirely away from structural food-
web analyses, especially research on the relationship of dynamical stability to
diversity and connectance. Given that the cascade model was developed with
data that turned out to be poorly resolved, it was unlikely to survive testing
with improved data that differed dramatically from earlier data. Indeed, its fun-
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FIGURE 1 The relationship of links to species for 19 trophic-species food webs from
a variety of habitats (black circles). The solid line shows the log-log regression for the
empirical data, the dashed line shows the prediction for constant connectance, and the
dotted line shows the prediction for the link-species scaling law.

damental assumption of no looping, particularly cannibalism, was shot down
repeatedly in improved datasets. It was also unclear whether the cascade model
even described early data well (Schoener 1989). A graph theoretic analysis sug-
gested that the relationship between connectance and species in early empirical
webs that appeared to support the cascade model could not be distinguished
from the relationship generated by a random model that included sampling ef-
fects, although other aspects of potentially non-random network structure were
not considered (Kenny and Loehle 1991). Another analysis looked at the good-
ness of fit of the cascade model to the early ECOWeB data and found that,
while it did seem to capture the central tendency of the data, it failed to char-
acterize variability. Namely, the data were over-dispersed in relation to model
predictions, leading to rejection of the model and a modified form of the model
at “essentially any significance level” (Solow 1996). Furthermore, the random
distribution of links by the cascade model, albeit within a constrained portion of
an interaction matrix, resulted in less species lumpiness than found in the Little
Rock Lake and larger ECOWeB food webs. In other words, there is more overlap
of predators and prey for species in diverse empirical webs than in simulated
webs based on a random distribution of links (Solow and Beet 1998).
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4.1 NICHE MODEL

A new food-web structure model, in the tradition of the phenomenological,
graph-theoretic, stochastic cascade model, was proposed by Williams and Mar-
tinez (2000) (Box 1). This niche model addresses several limitations of the cas-
cade model, particularly the assumption of link-species scaling, the exclusion
of looping, and the lack of trophic overlap among species. However, the niche
model retains much of the simplicity and tractability embodied by the earlier
model. As in the cascade model, the niche model has two tunable parameters
that determine the number of species and links. In the case of links, instead of
assuming constant L/S (Cohen and Newman 1985b), Williams and Martinez
used directed connectance C (L/S2) as the link parameter, allowing it to vary
(Cohen et al. 1985). Thus, Williams and Martinez (2000) made no assumption
about link-species scaling, and did not replace it with any other hypothesis about
the relationship between L and S. However, their choice of C reflected the notion
that C is independent of S (Martinez 1992, 1993a) just as Cohen and Newman’s
(1985b) choice of L/S reflected the notion that L/S is independent of S (Cohen
and Briand 1984). Beyond the two input parameters S and C, the niche model,
like the cascade model, orders species along a single dimension. However, instead
of the cascade model’s simple rank-ordering of species, the niche model assigned
each species a uniformly random niche value along a line, and that niche value
corresponds to the position of each species on the line. To distribute links, each
species is assigned a feeding range that represents an interval of the line whose
midpoint is a uniformly random number less than the niche value of the species
possessing the range. All species that fall in this range are eaten by the consumer
species (Box 1). Feeding range sizes are drawn randomly from a beta distribution
to produce a C close to the target C (Williams and Martinez 2000).

The distribution of feeding links in the niche model leads to several out-
comes: (1) cannibalism and feeding on species with higher niche values can oc-
cur, (2) there is higher trophic overlap than in purely stochastic link distribution
schemes, since species with similar niche values are more likely to share con-
sumers, and (3) food webs are rendered interval due to contiguous feeding by
each consumer on resources within a single range or segment of the line. The
first two outcomes, along with using variable C as a parameter, address the
three main limitations of the cascade model. The third outcome represents an
acknowledged limitation of the niche model (Williams and Martinez 2000), since
diverse empirical food webs are known to not be interval (Cohen and Palka 1990).
Williams and Martinez (2000) argued that intervality is a delicate property that
is easily broken, often by the loss of just one link in a web. They hypothesized
that quantitative measures of intervality will show that the degree of intervality,
rather than just the presence of intervality, is quite high in empirical food webs.

In addition to these model innovations, Williams and Martinez (2000) also
introduced the use of numerical simulations to compare statistically the abil-
ity of the niche model and alternate network models to fit empirical food-web
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data. They standardized the form of multiple models by creating versions of the
cascade and a random model that use variable S and C as input parameters.
This ensures that the three models vary only in how they distribute links among
species (Box 1). Because of stochastic variation in aspects of how species and
links are distributed in any particular model web, analysis begins with the gen-
eration of hundreds to thousands of model webs with the same S and similar
C as an empirical food web of interest. Model webs that fall within 3% of the
target C are retained. Species that are either disconnected (i.e., species that lack
links) or trophically identical to other species, or webs that contain such species,
are eliminated and replaced. The exclusion of trophically identical species means
that model webs are most fruitfully compared to trophic-species versions of em-
pirical food webs, rather than original-species webs, unless most or all of their
species are already trophically distinct. Additionally, in the cascade and niche
models, no prey are assigned to the species with the lowest niche value, ensuring
there is at least one basal species per web. Once a set of model webs is generated,
model means and standard deviations are calculated for each food-web property
of interest, which can then be compared to empirical values. Raw error, the dif-
ference between the value of an empirical property and a model mean for that
property, is normalized by dividing it by the standard deviation of the property’s
simulated distribution. This approach allows assessment not only of whether a
model over- or underestimates empirical properties as indicated by the raw er-
ror, but also to what degree a model’s mean deviates from the empirical value.
Normalized errors within ±2 are considered to indicate a good fit between the
model prediction and the empirical value (Williams and Martinez 2000).

All three models were evaluated by how well they fit up to 12 structural
properties of seven empirical community food webs drawn from the expand-
ing set of improved food-web datasets, with 25 to 92 trophic species and 0.061
to 0.32 connectance (Williams and Martinez 2000). The properties include old
standbys such as T, I, and B as well as other properties of interest in food-
web research (proportions of omnivores, cannibals, and species in loops; chain
length properties; trophic similarity; variation of generality and vulnerability).
Link proportions were excluded due to their strong correlation with T, I, and B.
In summary, the random model performed poorly, with an average normalized
error (ANE) of 27.1 (SD = 202), the cascade model performed much better,
with an ANE of −3.0 (SD = 14.1), and the niche model performed an order of
magnitude better that that, with an ANE of 0.22 (SD = 1.8). Only the niche
model falls within ±2 ANE and is considered to show a good fit to the data.
Not surprisingly, there is variability in how all three models fit different food
webs and properties. For example, the niche model generally overestimates food-
chain length. Specific mismatches are generally attributable either to limitations
of the models or biases in the data. A separate test of the niche and cascade
models with three marine food webs, a type of habitat not included in the orig-
inal analysis, obtained similar results (Dunne et al. 2004). That test added four
properties to the analysis: proportion of herbivores, mean trophic level, clus-
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tering coefficient, and characteristic path length. The latter two properties are
borrowed from “small-world” network research and will be discussed more be-
low (see Small-World Properties and Degree Distribution section). The niche
model’s performance on the new properties is similar to previous properties. For
example, the niche model tends to systematically underestimate the proportion
of herbivores, which partly explains its overestimation of food-chain length.

Like the cascade model, but taking into account improved food-web data,
these niche model studies demonstrate that the structure of food webs is far from
random, and that simple link distribution rules can yield apparently complex net-
work structure, comparable to that observed in empirical data. In addition, like
the cascade model, the niche model is simple enough that it is analytically solv-
able, leading to theoretical predictions similar to trends in numerical simulations
and empirical data (Camacho et al. 2002a,b). The hypothesis of scale dependence
suggests that there are not simple generalities or constant values of network prop-
erties that hold across food webs with varying S. However, the concordance of
the niche model with empirical data suggests that once variable S and C are
taken into account, there appear to be universal coarse-grained characteristics
of how trophic links and species (defined according to trophic function) are dis-
tributed within food webs across a wide array of habitats. Of course, the current
success of the niche model needs to be taken in context, since, like the cascade
model it orients itself to data that are flawed and limited. New data and better
understanding about key processes, properties, and interactions in food webs, or
more broadly, ecological networks, may lead to more efficacious approaches or to
the rejection of any general model. Martinez et al. (Chapter 6) and others have
already proposed some variations on the niche model as discussed below.

4.2 NESTED-HIERARCHY MODEL

Another simple topological model similar to the niche and cascade models, the
nested-hierarchy model, addresses the intervality limitation of the niche model
(Box 1, Cattin et al. 2004). Following methods introduced by Williams and
Martinez (2000), Cattin et al. use S and C as input parameters, distribute species
niche values randomly along a line, and stochastically assign the number of
prey items for each species using a beta distribution. They then distribute links,
starting with the species with the lowest niche value, in a way that (1) avoids
creating interval webs, (2) generates webs with trophic overlap (Solow and Beet
1998; but see Stouffer et al. 2005)), and (3) allows a low probability of looping.
First, a link is randomly assigned from a consumer species i to another species
j with a lower niche value. If that resource species j is also fed upon by other
species, the consumer species i’s next feeding link is randomly selected from the
pool of resource species of a set of consumer species defined as follows: they share
at least one prey species, and at least one of them feeds on resource species j. If
more feeding links are required, links are randomly assigned to species without
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predators and with lower niche values. If yet more feeding links are needed, links
are randomly assigned to species with equal or higher niche values.

Cattin et al. (2004) compared the fit of this model and the niche model to the
7 webs and 12 properties analyzed by Williams and Martinez (2000) plus two
additional properties that reflect aspects of intervality. They compared model
means and standard deviations with empirical values, but did not calculate nor-
malized error. They concluded that the two models perform comparably on the
original 12 properties, but the nested-hierarchy model does better for the two
intervality properties. This is not surprising since the niche model necessarily re-
turns 0 values for the intervality properties. A re-analysis of Cattin et al.’s results
illuminates some overstated or incorrect claims in their abstract, namely that the
nested-hierarchy model “better reflects the complexity and multidimensionality
of most natural systems,” and that the niche model fails “to describe adequately
recent and high-quality data.” Martinez and Cushing (Box A) suggest that Cat-
tin et al. base their claims on selective favoring of intervality, and gloss over other
details of fit. Indeed, these types of analyses will always be influenced by how
much importance is ascribed to particular properties (Cattin et al. Box B). How-
ever, any slight difference in the performance of the niche and nested-hierarchy
models, which could be assessed more rigorously using normalized error, is not
comparable to the order of magnitude improvement of the niche model over the
cascade model, the quantitative assessment of which did not even include the
cascade model’s failure to generate cannibalism or other looping (Williams and
Martinez 2000). Indeed, the fit of the nested-hierarchy model to intervality prop-
erties may come at the expense of reduced fit to other properties (Martinez and
Cushing Box A). Another way the niche model could be modified to break in-
tervality is by generating feeding ranges that are slightly larger, and by making
the probability that the consumer species eat species within their feeding ranges
slightly less than 100% (R. J. Williams, personal communication). However, all
previous attempts to modify the niche model based on ecological understand-
ing to improve its overall fit to data failed (unpublished data, Williams and
Martinez).

4.3 GENERALIZED ANALYTICAL MODEL

An analytical study building on Camacho et al. (2002a,b) provides a compelling
reason why the nested-hierarchy model does not generally improve on the niche
model. Although the nested-hierarchy model “appears to be quite different in
its description, it nevertheless generates webs characterized by the same univer-
sal distributions of numbers of prey, predators, and links” (Stouffer et al. 2005,
original emphasis). Stouffer et al. found that only two conditions must be met
for network models to reproduce several central properties of currently avail-
able improved food-web data: (1) species niche values form a totally ordered set,
and (2) each species has a specific probability, drawn from an approximately
exponential distribution, of preying on species with lower niche values. The first
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Box 1: Models of Food-Web Structure
Four simple, stochastic models that have been proposed to generate and predict

the network structure of empirical food webs are described. The models share two
empirically quantifiable input parameters: (1) S, the number of species or taxa in
a web, and (2) C, connectance, a metric determined by the number of links and
species in a food web. There are S2 possible and L actual links in a particular
food web, and directed connectance C is defined as L/S2, or the proportion of
possible links that are actually realized. The models differ in the rules they use to
distribute links among species, as follows:

• Random Model (inspired by Erdös and Rényi 1960; see also Cohen
1977b)

Any link among S species occurs with the same probability P equal to C. This
creates food webs as free as possible from biological structuring.

• Cascade Model (modified from Cohen and Newman 1985b)

Each species is assigned a random value drawn uniformly from the interval
[0, 1]. Each species has the probability P = 2CS/(S − 1) of consuming species
with values less than its own. This creates a feeding hierarchy and disallows
cannibalism and feeding on species higher in the hierarchy, as illustrated in the
following diagram.

0 1

i
Species i feeds on two species,
shown in grey, with lower values.

This formulation is a modified version (Williams and Martinez 2000) of the
original cascade model (Cohen and Newman 1985b), which tuned L/S (link
density) to the data by using an average across empirical webs to look at scaling
patterns generated by the model. This assumed constant L/S and ensured that
C declined hyperbolically with S, as suggested by early theory and data. Recent
studies use variable C as the parameter that constrains the number of links in
model webs, employing a similar approach to Cohen et al. (1985) who tuned
L/S to values for particular webs.

• Niche Model (Williams and Martinez 2000)

As in the modified cascade model, each species is assigned a random value
drawn uniformly from the interval [0, 1], referred to as the species’ niche value,
ni. Each species consumes all species within a range of niche values ri. The
size of ri is randomly assigned using a beta function, producing a C close or
identical to the target C. The center of the range ci is drawn uniformly from
the interval [ri/2, ni] or [ri/2, 1 − ri/2] if ni > 1 − ri/2. This keeps all of the
feeding range within [1, 0] and places the center of a species’ range lower than
its niche value.

continued on next page
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Box 1 continued

As shown in the diagram below, the ci rule relaxes the strict feeding hierarchy of
the cascade model by allowing up to half of the feeding range to include species
with niche values ≥ ni, thus permitting cannibalism and feeding on species with
higher niche values.

0 1
ni

ci

ri

i

Species i feeds on all four species, shown in grey, within
its feeding range ri.  This includes a cannibalistic link to
itself and a link to a species with a higher niche value.

• Nested-Hierarchy Model (Cattin et al. 2004)

Following the cascade and niche models, each species is assigned a random niche
value [0, 1]. Like the niche model, the number of prey items for each species
is drawn randomly from a beta distribution that constrains C to be close to
the target. Feeding links are assigned in a multistep process. First, a link is
randomly assigned from species i to a species j with a lower niche value. If
that prey species j is also fed upon by other species, the next feeding link for
species i is selected randomly from the pool of resource species fed on by a set
of consumer species defined as follows: they share at least one prey species, and
at least one of them feeds on species j. If more feeding links are required, links
are randomly assigned to species without predators and with niche values < ni.
If more feeding links are required, links are randomly assigned to species with
niche values ≥ ni. Thus, the model relaxes the contiguous feeding, and thus
intervality, of the niche model.

St. Marks Estuary       Random             Cascade                            Niche                        Nested-Hierarchy

The food web for St. Marks Estuary (Christian and Luczkovich 1999), and an example of four types of model
webs with the same S and C as the empirical web.  Images produced with FoodWeb3D, written by R. J. Williams
and available at www.foodwebs.org.

condition was met by the cascade model (Cohen and Newman 1985b) and is
equivalent to their rule that species are ordered along a single dimension. The
niche model adopted that rule by assigning each species a unique niche value
drawn randomly from the interval [0, 1]. The second condition was newly em-
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bodied in the niche model through its use of a beta distribution as the means
by which the size of feeding ranges is distributed (Williams and Martinez 2000).
Stouffer et al. (2005) note that the beta distribution is a type of exponential
distribution. They show that the specific form of the exponential distribution
does not alter predictions about the distributions of numbers of prey and preda-
tors, nor does it alter a number of network structure properties derivable from
those two distributions. Their focus on numbers of prey and predators as two
fundamental, non-identical distributions relates back to Schoener’s (1989) work
discussing the importance of understanding differences in vulnerability (num-
ber of predators) and generality (number of prey) for developing simple models
of food-web structure, differences reflected in improved empirical data and the
niche model (Williams and Martinez 2000).

Ordered niche values and the beta distribution (Williams and Martinez 2000)
were adopted by the nested-hierarchy model (Cattin et al. 2004). The nested-
hierarchy model has different link distribution rules that are meant to mimic
phylogenetic constraints. However, Stouffer et al. (2005) point out that Cattin
et al.’s distribution rules ensure that a species is assigned prey essentially ran-
domly from the set of species with lower niche values, as constrained by the beta
distribution. As a result, the nested hierarchy model returns the same distribu-
tions of numbers of predators, prey, and links among species as does the niche
model. Stouffer et al. (2005) test their hypothesis about the centrality of the two
conditions by modifying the cascade model to meet the second condition. This
modified cascade model also produces the same general analytical expressions,
or universal functional forms, for distributions as the niche and nested-hierarchy
models. Based on their analysis, Stouffer et al. consider the nested-hierarchy and
modified cascade models to be “randomized” versions of the niche model, which
was the first model to embody the two fundamental conditions they identify as
central to model representations of empirical food-web network structure.

Several common food-web properties previously used to assess particular
models (Williams and Martinez 2000; Cattin et al. 2004) can be derived from
the analytical expressions for the distributions of numbers of prey and preda-
tors, including fractions of top, basal, and cannibalistic species, and standard
deviations of vulnerability and generality (Stouffer et al. 2005). Other deriv-
able properties of potential interest include the correlation coefficient between
each species’ number of prey and predators, and assortativity, the probability
with which nodes with high degree (many links) link to other high-degree nodes
(Newman 2002). Food webs tend to be negatively assortative, or disassortative
(Newman 2002; Stouffer et al. 2005). With reference to this set of properties,
and drawing on 15 of 19 improved food webs described in Dunne et al. (2002ab,
2004), Stouffer et al. (2005) find that empirical values for 11 of the 15 food webs
are well described by the model’s analytical expressions and numerical simula-
tions. Stouffer et al. (2005) also added the potential for cannibalism (i.e., feeding
on species with equal niche values) to the modified cascade model to make it
even more comparable to the other two models. However, allowing for a low
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probability of cannibalism, or a low probability of feeding on species with higher
niche values as in the niche and nested-hierarchy models, does not alter analyt-
ical predictions of predator and prey distributions and thus is not included in
condition two (Stouffer, personal communication).

What Stouffer et al. (2005) do not address are other aspects of the models
and data, particularly with regard to looping, intervality, omnivory, herbivory,
food-chain statistics, trophic level, and other properties of ecological interest
(Williams and Martinez 2000, 2004b; Dunne et al. 2004a,b; Cattin et al. 2004).
While they appear to have identified fundamental aspects of species and link dis-
tributions that underlie and emerge from currently successful models of food-web
network structure, not all properties of ecological interest are derivable from dis-
tributions of numbers of predators and prey. Differences and similarities among
particular models with respect to such properties are not addressed by the gen-
eral analytical model (Stouffer et al. 2005). For example, the nested-hierarchy
and modified cascade models allow for non-interval webs, and the niche and
nested-hierarchy models allow for feeding on species with higher niche values.
These particular aspects of the models may not significantly impact the overall
distribution of numbers of predators and prey, but will affect how well the mod-
els capture other quantifiable and ecologically interesting variability in food-web
network structure. Also, while Stouffer et al. (2005) have demonstrated core con-
ditions and universal functional forms for some aspects of food-web structure that
emerge out of the niche model, how well those conditions and functional forms
continue to fit the data depends on evolving data availability and standards.
Access to more comprehensive data that is more highly and evenly resolved, or a
switch in focus to other more ecologically compelling ways to slice and dice data,
may necessitate the development of some other approach to modeling ecological
network structure. Whether and how the simple rules that appear to generate
food-web-like topology actually connect back to ecological, evolutionary, ther-
modynamic or other principles remains a wide-open area of inquiry. This, more
than anything, is likely to impact how ecological network data is modeled in the
future.

4.4 SMALL-WORLD PROPERTIES AND DEGREE DISTRIBUTION

The resurgence of interest in the late 1990s across disciplines in describing general
properties of the network structure of everything from social groups to WWW
page links to power grids to transportation systems to metabolic pathways to
scientific citations, brought to light a few topological properties that had not pre-
viously been explicitly evaluated for food webs. It also brought a new question to
the table: do food webs have similar topology to other biotic, social, and abiotic
networks? A paper published by Watts and Strogatz (1998) led the resurgence by
bringing the notion of “small-world” network structure to the foreground. They
suggested that most real-world networks look neither like randomly connected
graphs (Erdös and Rényi 1960) nor regularly connected lattices in which every
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node has the same number and pattern of links. Instead, real-world networks
appear to combine aspects of both—they have high clustering, like regular lat-
tices, but short paths between nodes, like random graphs. These features are
typically expressed by two properties: clustering coefficient, or the average frac-
tion of pairs of nodes connected to the same node that are also connected to each
other, and characteristic path length, or the average shortest distance between
pairs of nodes. Work initiated by Barabási and colleagues (as reviewed in Albert
and Barabási 2002) suggested that most real-world networks also display power-
law degree distributions, which refers to the distribution of the number of links
per node. Regular lattices display a constant distribution of links among nodes,
while random graphs display a Poisson distribution of links among nodes. Most
empirical networks appear to display a highly uneven power-law or scale-free
distribution of links among nodes, with most nodes having few links and a few
nodes having a very large number of links.

Several papers published in 2002 considered the question of whether empir-
ical food webs display small-world, scale-free network structure similar to many
other real-world networks (also reviewed in Cartozo et al. Chapter 3). Using
original species versions of three relatively diverse and well-resolved webs, Mon-
toya and Solé (2002) suggested that food webs do tend to display small-world,
scale-free structure, although the Little Rock Lake food web did not fit those
patterns well. Looking across trophic-species versions of the seven community
webs analyzed by Williams and Martinez (2000), Camacho et al. (2002b) contra-
dicted Montoya and Solé (2002) by concluding that clustering coefficients of food
webs appear similar to random expectations, less than the clustering observed
in small-world networks. Using cumulative rather than density distributions due
to the noisiness of the data (Amaral et al. 2000), Camacho et al. (2002b) also
concluded that food webs do not display scale-free distributions of links, irre-
spective of whether total links, number of predators, or number of prey are
considered. However, when the distributions are normalized for linkage density
by dividing the number of links by 2L/S, empirical food-web link distribution
data appears to display universal functional forms (Camacho et al. 2002b). For
example, cumulative degree distribution, assessed using data pooled across six
of seven food webs, shows a systematic exponential decay in its tail. This type
of distribution, less skewed than a power-law distribution, has been observed in
a few other “real-world” networks (Amaral et al. 2000). Clustering coefficient
and path length also appear to follow universal functional forms that scale with
linkage density (Camacho et al. 2002b). Numerical and analytical predictions of
the niche model (Williams and Martinez 2000) fit empirical data quite closely for
clustering coefficient, characteristic path length, and distributions of numbers of
predators, prey, and links (Camacho et al. 2002b; Williams et al. 2002; Dunne
et al. 2004; Stouffer et al. 2005).

Dunne et al. (2002a) attempted to resolve differences between Montoya and
Solé (2002) and Camacho et al. (2002b) by examining a larger array of 16 trophic-
species food webs, including those analyzed in the other two studies. Corroborat-
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ing aspects of Camacho et al. (2002b), Dunne et al. found that most food webs
display low clustering coefficients and non-power-law degree distributions, in
particular less skewed exponential and uniform distributions. However, they also
found that webs with very low connectance (e.g., the Scotch broom source web
with C = 0.03) were more likely to display both higher-than-random clustering
and power-law degree distributions, consistent with the small-world, scale-free
structure of many other types of networks, and as reported for food webs by Mon-
toya and Solé (2002). Using linkage density normalization to overlie cumulative
degree distributions of the 16 webs, Dunne et al. (2002a) concluded there was too
much variation in the data to support the notion of a universal functional form
(Camacho et al. 2002b; Stouffer et al. 2005), and pointed out that such variation
can be masked by pooling the data and excluding datasets that don’t fit the
pattern well. However, the data are obviously constrained within a region that
is not power-law in its form. Both the tendency for much, but not all, improved
food-web data to converge on universal functional forms that scale with linkage
density (Stouffer et al. 2005), as well as potentially systematic deviations from or
variability around those central tendencies (Dunne et al. 2002a), are important
research issues that can reveal interesting insights at different levels of analysis.
For example, while the niche model produces network structures that have expo-
nential degree distributions (Camacho et al. 2002b), individual empirical webs
can show other distributions, particularly uniform distributions (Dunne et al.
2002a). A simple model that starts with a randomly linked “regional” pool of
species, and then creates “local” food webs via random immigration from the
regional pool coupled with random extinctions from the local web, produces sig-
nificant percentages of webs with exponential as well as uniform degree distribu-
tions (Arii and Parrott 2004). This study highlights simple assembly mechanisms
that can produce variable degree distributions, mechanisms that may be relevant
for empirical webs.

All studies looking at small-world structure in food webs (Montoya and Solé
2002; Camacho et al. 2002b; Dunne et al. 2002a, 2004; Williams et al. 2002) have
reported short path lengths similar to random expectations (i.e., “two degrees
of separation”; Williams et al. 2002), consistent with one aspect of small-world
structure. However, apart from path length, most currently available food-web
data clearly deviate from the small-world, scale-free topology observed for other
biotic and abiotic networks (Camacho et al. 2002b; Dunne et al. 2002a). Com-
pared to other networks, food webs have low diversity and high connectance,
which appear to be drivers of clustering coefficient and degree distribution pat-
terns. The ratio of observed clustering coefficient to the random expectation,
which is 1 for many food webs, scales approximately linearly with network size
among a wide range of biological, social, and technological networks (Dunne et
al. 2002a). Degree distribution is related to connectance, with networks that
show power-law distributions being much more sparsely connected (i.e., lower
C) than most food webs. While many empirical food webs display exponential
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degree distributions, higher connectance webs often display less skewed uniform
distributions (Dunne et al. 2002a).

4.5 UNIVERSAL PATTERNS?

In addition to the question of whether food webs display small-world, scale-free
topology, researchers have considered other ways of identifying general topo-
logical patterns in binary-link food webs, often borrowing methods from other
types of network research. Research on scale-dependence of empirical food-web
properties, the niche model and its offshoots, and analyses of small-world struc-
ture and degree distribution all suggest that food webs generally do not have
scale-invariant patterns conventionally understood to be “universal.” Instead,
food webs tend to display scale-dependent patterns that can be characterized,
depending on how much variability is ignored, as universal functional forms (Ca-
macho et al. 2002b). These scale-dependent patterns or functional forms emerge
once data from different webs are normalized for link density, 2L/S, the rela-
tionship between the number of links (L) and species (S) in a web (Camacho et
al. 2002b; Dunne et al. 2002a; Stouffer et al. 2005).

However, other studies suggest that there are universal topological patterns
in empirical food webs that hold regardless of S, L, or their relationship. Milo et
al. (2002) developed an algorithm for detecting network motifs based on the sta-
tistical approach of Williams and Martinez (2000). They define network motifs
as “recurring, significant patterns of interconnections.” For a variety of biotic
and abiotic networks, they identified and counted all possible configurations of
three- and four-node subgraphs, and then compared the frequency of different
subgraphs in empirical networks to their frequency in comparable randomized
networks. Particular subgraph types are considered motifs when they occur sig-
nificantly more often than expected for random webs. Milo et al. (2002) analyzed
the seven food webs from Williams and Martinez (2000) and found that five of
seven share a three-node motif referred to as three-chain or a three-species food
chain. Additionally, all seven share a four-node motif referred to as bi-parallel
in which two species share a common predator and prey. The food webs do not
share the three-node motif with other types of networks, but do share their four-
node motif with the C. elegans neuronal network and all five electronic circuit
networks considered. The presence of significant motifs in food webs appears to
be independent of network size (S), but the frequency of motifs in food web and
other networks appears to grow linearly with size, unlike the frequency in ran-
domized networks. Milo et al. (2002) speculate that motifs may be interpreted as
“structures that arise because of the special constraints under which the network
has evolved.”

Food webs have also been investigated as a type of transportation network,
using methods applied to river basins and vascular systems (see Cartozo et al.
Chapter 3 for detailed discussion). Garlaschelli et al. (2003) decompose seven
food webs with 42 to 123 trophic species into minimal spanning trees. A minimal
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spanning tree is a simplified version of a network that is created by removing
links to minimize the distance between nodes and some destination. One way to
create a minimal spanning tree of a food web is to add an additional environment
node to which all basal species link, and then to trace the shortest food chain
from each species to the environment node. Links that are not a necessary part
of any of these shortest food chains (e.g., cannibalism, and other links in loops)
are excluded from the tree. Garlaschelli et al. (2003) analyzed the allometric scal-
ing of these trees, or how their branching properties change with network size.
They found that all seven food webs display a power-law, scale-free relationship
with an exponent of 1.13, although the three smallest webs display marginally
larger exponents. This suggests that minimal spanning trees may successfully
characterize a universal core structure in food-web networks. However, the “uni-
versality” of the exponent for food-web minimal spanning trees has been called
into question by an analysis of a broader set of 17 food webs, which display ex-
ponents ranging from 1.09 to 1.26 (Camacho and Arenas 2005). The short range
of the exponent values is attributed to the relatively small mean trophic level of
most food webs. The particular exponents for food-web minimal spanning trees
suggests that they can transport resources more efficiently across the whole net-
work than river or vascular systems, which display higher exponents. Within a
reasonable range of connectance (0.05 to 0.3), the niche model (Williams and
Martinez 2000) underestimates empirically observed exponents, returning values
of 1.06 to 1.08 (Garlaschelli et al. 2003).

Other approaches for identifying universal network structure have yet to be
applied to food webs. For example, Song et al. (2005) found that the network
structure of a variety of real-world networks obeys power-law scaling, as if they
are fractal shapes. This self-similarity was found to apply to the relationship
between the number of boxes (i.e., sub-groups of connected nodes) needed to
cover a network and the size of the box. Song et al. (2005) also used a renormal-
ization procedure to coarse-grain the networks by sequentially collapsing boxes
into single nodes and then creating new boxes. These aggregated networks fit
the same power-law scaling as individual-node networks. Given that food webs
differ in some basic ways from many other empirical networks, it will be inter-
esting to see if this self-similarity applies to ecological networks. While analysis
of food-web data may be inconclusive, given how small they are relative to most
other networks studied, food-web models such as the niche model could be used
to explore higher diversity webs as well as any sensitivity to changes in diversity
and connectance.

4.6 NETWORK STRUCTURE AND ROBUSTNESS OF FOOD WEBS

As the previous sections highlight, research on general or universal aspects of
food-web network structure underwent a renaissance at the beginning of the
2000s as a result of improved data, new topological models, and concepts and
approaches borrowed from general network theory. Network approaches also
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brought back into focus the question of how food-web structure might relate
to issues of core ecological interest, such as ecosystem stability. Within ecol-
ogy during the 1990s, questions about stability were increasingly transformed
into questions about ecosystem responses to perturbations and the relationship
between ecosystem complexity, especially diversity, and ecosystem function (Mc-
Cann 2000). Classic research into connectance and how it relates to May’s sta-
bility criterion (May 1973) was largely abandoned, as foreseen by Paine (1988).
However, in a new introduction to the 2001 Princeton Landmarks in Biology
Edition of his 1973 book, May wrote, “. . .the theme of the relationship between
the network structure of food webs and their ability to handle perturbation is
central in ecology, as in many other subjects. . . .The reorientation of this ques-
tion to what kinds of connectance patterns are likely to be most resistant to
specific kinds of disturbance is of continuing relevance in ecology, as elsewhere.”

May’s (2001) comments were inspired partly by emerging research in the
broader arena of network theory. About that time, a series of papers examined the
response of a variety of networks including the Internet and WWW pages (Albert
et al. 2000) and metabolic and protein networks (Jeong et al. 2000, 2001) to the
simulated loss of nodes. In each case, the networks, all of which display highly
skewed power-law degree distributions, appear very sensitive to the targeted
loss of highly connected nodes but relatively robust to random loss of nodes.
When highly connected nodes are removed from scale-free networks, the average
path length tends to increase rapidly, and the networks also quickly fragment
into isolated clusters. In essence, paths of information-flow in highly skewed
networks are easily disrupted by the loss of nodes that are directly connected to
an unusually large number of other nodes. In contrast, random networks with
much less skewed Poisson degree distributions display similar responses to the
targeted loss of highly connected nodes versus random node loss (Strogatz 2001).

Within ecology, species deletions on small (S < 14) hypothetical food-web
networks as well as a subset of the 113 web catalog were used to examine the reli-
ability of network flow, or the probability that sources (producers) are connected
to sinks (consumers) in food webs (Jordán and Molnár 1999). They concluded
that the structure of the empirical webs appeared to conform to reliable flow
patterns identified using the hypothetical webs, but that result was based on
the early poorly resolved data. Following Albert et al. (2000), Solé and Mon-
toya (2001) used three improved, diverse food webs to conduct species knockout
simulations. Instead of path length, Solé and Montoya looked at the level of sec-
ondary extinctions potentially triggered by different patterns of primary species
loss. This is easily measured in binary food-web networks using the simple algo-
rithm that if primary extinctions cause a consumer to lose all of its resources, it
too goes extinct. In all three food webs, removal of highly connected species re-
sulted in much higher rates of secondary extinctions than random loss of species,
and also fragmented the webs more rapidly, similar to results seen for other types
of networks (e.g., Albert et al. 2000). Solé and Montoya (2001) attributed this
to highly skewed power-law degree distributions (Montoya and Solé 2002). How-
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ever, most food webs do not have power-law link distributions (Camacho et al.
2002b; Dunne et al. 2002a), so the generality of those results was unclear. Also,
the web that showed extreme fragility to the loss of highly connected species was
a detailed source web based on only one basal species, Scotch broom (Memmott
et al. 2000). In this web, Scotch broom has a large number of species linking to
it and, as a result, is removed very early in the non-random deletion sequence,
leading to the necessary collapse of the entire web. That collapse is attributable
to the particular and peculiar characteristics of the Scotch broom dataset, and
is not good evidence for a general trend in community food webs (Jordán 2002;
Dunne et al. 2002b).

To address these issues, a set of 16 non-marine food webs (Dunne et al.
2002b) and 3 marine food webs (Dunne et al. 2004) was used for similar bio-
diversity loss simulations. It was found that even without highly skewed degree
distributions, food webs are much more robust to random loss of species than
to loss of highly connected species. These results suggest that any substantial
skewness in degree distribution will tend to alter the response of a network to
different kinds of node loss. Similarly, the order of pollinator loss was found to
have an effect on potential plant extinction patterns in two detailed, speciose
plant-pollinator networks (Memmott et al. 2004). Loss of plant diversity associ-
ated with targeted removal of highly connected pollinators was not as extreme
as comparable secondary extinctions in food webs, which Memmott et al. (2004)
attribute to pollinator redundancy and the nested topology of the networks.

The previous studies all point to the trend that sequential loss of highly con-
nected species has a greater impact than random losses. However, the “knock-
out highly connected species” approach is not necessarily useful for identifying
particular species likely to have the greatest impact: loss of a particular highly
connected species may or may not result in a large number of secondary ex-
tinctions. To address this, Allesina and Bodini (2004) used a dominator tree
approach to reduce the topological structure of 13 empirical food webs into lin-
ear pathways that define the essential chains of energy delivery in the network.
A particular node dominates another node if it passes energy to it along a chain
in the dominator tree. In addition to corroborating prior findings of higher sec-
ondary extinctions with targeted loss of species (in this case, the loss of species
that dominate many other species) versus random losses, Allesina and Bodini
(2004) showed that the higher the number of species that a particular species
dominates, the greater the secondary extinctions that result from its removal.

Dunne et al. (2002b, 2004) provide yet another answer to May’s (2001) ques-
tion about patterns of connectance and ecosystem responses to perturbation.
They found that food-web robustness, defined as the fraction of primary species
loss that induces at least 50% total species loss (primary + secondary extinc-
tions) for a particular trophic-species web, increases with increasing connectance,
L/S2. This holds both for random species loss and targeted removal of highly
connected species. While systematic removal of species with few links generally
leads to low levels of secondary extinctions, there are exceptions, and there is no
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obvious correlation of those exceptional responses with global food-web proper-
ties such as S or C (Dunne et al. 2002b). Such apparently idiosyncratic effects of
the loss of least-connected species probably have to do with finer-level patterns
of link distribution within particular webs. One possibility is that such species
“dominate” many other species within a dominator-tree context (Allesina and
Bodini 2004), even though they have few direct links to other species. Or such
effects may simply be hard to assess a priori using standard measures of network
topology. Unpredictability of species’ likely importance for extinction dynamics
was reported in a dynamical food-web modeling study on the resistance of com-
munities to non-random extinctions, based on species’ sensitivity to a theoretical
stressor (Ives and Cardinale 2004).

While the previous species removal studies (Jordán and Molnár 1999; Solé
and Montoya 2001; Dunne et al. 2002b, 2004; Memmott et al. 2004; Allesina
and Bodini 2004) are informed by a purely network-structure perspective that
ignores dynamics, it has been demonstrated repeatedly that constraints imposed
by structure can have a significant role in the outcomes of dynamics (e.g., Pimm
and Lawton 1978; McCann and Hastings 1997; Jordán et al. 2002; Martinez et
al. Chapter 6; see also the review by Jordán and Scheuring 2004). Ideally, such in
silico biodiversity loss and related species invasion experiments will be conducted
using approaches that integrate structure and dynamics (see Integrating Struc-
ture and Dynamics section). Even without explicit dynamical analysis, food-web
topology research shows that more than 95% of species are within three links of
each other, and that species draw ever closer as connectance and species rich-
ness increase (Williams et al. 2002). This suggests that the dynamics of species
in complex ecosystems are more tightly connected than conventionally thought,
which has profound implications for the impact and spread of perturbations.

5 RELATED TOPICS AND FUTURE DIRECTIONS

As the previous sections highlight, a great deal of interesting research on gen-
eral aspects of network structure of complex food webs has occurred since the
first 30-web catalog was analyzed and published (Cohen 1977a,b, 1978). Such
research is now thriving and has found a broader context in interdisciplinary
network research, following a lull during the 1990s when much of the focus was
on systematically exploring the impacts of methodology on patterns of food-web
properties. By limiting this review to research explicitly focused on potential
generalities in complex food-web network structure, I have neglected a number
of exciting topics that relate to food-web topology, many of which provide more
of an ecological context for such research. It is from these additional areas that
many of the future directions of structural food-web research are likely to emerge.
I wrap up the chapter with a brief discussion of a few of many possible related
topics.
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5.1 VARIABLE STRUCTURE ACROSS ECOSYSTEMS AND/OR
ENVIRONMENT

Since the beginning of food-web structure research, some studies have looked for
systematic differences among types of webs. For example, early data suggested
that food webs from fluctuating environments have lower connectance than those
from more constant environments (Briand 1983), and that three-dimensional
habitats have longer food chains than more two-dimensional habitats such as
forest canopy or grassland (Briand and Cohen 1987). Differences in food webs
across broad categories of habitat have also been considered, for example aquatic
versus terrestrial webs (Chase 2000), and marine versus “continental” webs (Co-
hen 1994; Link 2002; Dunne et al. 2004). Unfortunately, there is currently not
enough high-quality data, representing multiple webs from a variety of ecosys-
tems, to be more than suggestive in any assessment of systematic changes in
structure across environment or habitat (Dunne et al. 2004).

In addition, any comparisons of the details of food-web structure need to be
mediated by the understanding that species richness and connectance vary across
webs in ways that systematically impact structure. Unless food webs are con-
structed with the same methodology, which is almost impossible to standardize
across different habitats, such methodological variation may result in inconsis-
tent levels of sampling effort and thresholds for link inclusion. This can make it
difficult to discern systematic differences in food-web structure attributable to
ecological or environmental processes. The niche model or other models that use
S and C as inputs can help with this problem by acting as “benchmarks” for
assessing similarities and differences between food webs with varying S and C
(Dunne et al. 2004). The benchmark approach works by helping to factor out
variation due to species and/or links being differentially observable among habi-
tat types. S and C may also vary due to ecological or other non-methodological
reasons. How and why they vary beyond methodology has important implications
for food-web structure and dynamics and is a basic question for all of ecology.
For example, a source of variation in the relationship between S and C has been
suggested by the model of Solé et al. (2002), where the immigration probability
of new species into the system appears to be critical. This suggests that the de-
gree of openness of the system will influence the relationship in systematic ways
(Pascual et al. Chapter 15).

5.2 COMPARTMENTS

The presence or lack of compartmentalization may have implications for the
transmission of both beneficial and harmful effects throughout food webs, and
thus can affect the stability and robustness of ecosystems. Early food-web re-
search suggested that there is little detectible compartmentalization in food
webs (Pimm and Lawton 1980) although other studies using early data sug-
gested otherwise (Yodzis 1982; Raffaelli and Hall 1992). High connectance in food
webs, compared to many other types of networks studied, should tend to obscure
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compartmentalization, as indicated by low clustering coefficients (Amaral et al.
2002b; Dunne et al. 2002a) and short path lengths (Williams et al. 2002). How-
ever, some recent studies suggest that there are ways to identify compartments
in detailed food-web data. For example, Girvan and Newman (2002) borrowed
a “centrality” or “betweenness” index common to social network research, ap-
plied it to links, and successfully detected pelagic and benthic subcommunities
of species within the Chesapeake Bay food web (Baird and Ulanowicz 1989)
using only network structure data. Also borrowing from social network anal-
ysis, Krause et al. (2003) used a clustering algorithm (“KliqueFinder”) which
identifies subgroups with concentrated interactions (Frank 1995). They found
compartmentalization in three of five complex food webs, but the ability to find
compartments depended on inclusion of flow data. They generally did not detect
compartments in less complex food webs with or without flow data. Allesina et
al. (in press) identified multiple strongly connected components (SCCs) in 17
food webs, where an SSC is a set of species interconnected by cycles or loops.
However, they found that the number of SSCs identified is very sensitive to
removal of weak links (Winemiller 1990).

A promising algorithm for systematically identifying a type of food-web com-
partment in any size web using only structural data was developed by Melián
and Bascompte (2004). A k subweb is defined as a subset of species that are con-
nected to at least k predator and/or prey species within that subset. Each species
belongs to only one subweb, the subweb where each species has the highest k
value. In effect, k is the measure of links per species, or linkage density, within
the context of the subweb. Any particular species can have a higher absolute
number of links if connected to species in other subwebs. Melián and Bascompte
(2004) assessed the frequency distribution of subweb size in five speciose webs
with S of 134 to 237 and found that all follow a power-law distribution, with
zero or few links per species in most subwebs and a unique subweb with the most
links per species. The scaling exponents increase with web size and vary from
−1.87 to −0.65. Melián and Bascompte (2004) also calculated the connectance
of the most dense subweb for each web. They compared those values to means
for the most dense subweb of networks (with the same levels of S) generated by
various topological models including the niche model (Williams and Martinez
2000). No model was highly successful at generating webs with most dense sub-
web connectance closely comparable to that of the five empirical webs. However,
to be a more appropriate test of the niche model, the analysis should be redone
for trophic species versions of the food webs.

An issue for all studies considering compartmentalization or sub-web struc-
ture is whether such structures play any functional role within ecosystems. There
are likely innumerable ways for chopping up networks into clusters, but that does
not mean that such clusters are necessarily meaningful for ecological function
or dynamics. Ideally, future compartmentalization studies will be more directly
linked to issues such as ecosystem function, robustness, or resilience to pertur-
bations.
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5.3 CHAIN LENGTHS AND TROPHIC LEVELS

While from one perspective, food-chain length and trophic-level properties are
just a few of many possible metrics of food-web structure (Williams and Mar-
tinez 2000), there is a very rich body of research specifically on chain lengths
and trophic levels that spans theoretical, observational, experimental, and ap-
plied approaches dating back at least to Elton (1927). This research reflects the
understanding that food-chain length, or “the number of transfers of energy or
nutrients from the base to the top of a food web,” is a central characteristic of
ecological communities due to its impact on ecosystem functioning, such as nutri-
ent and carbon cycling, contaminant concentration, and trophic cascades (Post
2002). A great deal of research has gone into characterizing food-chain length,
exploring its implications for ecosystem functioning, and determining whether
and how it is constrained (Post 2002). Similar questions have been explored for
the closely related concept of trophic level, or “the number of times chemical en-
ergy is transformed from a consumer’s diet into a consumer’s biomass along the
food chains that lead to the species” (Williams and Martinez 2004b), although
some researchers have claimed that the concept lacks scientific utility (Polis and
Strong 1996).

Food-chain length and trophic level have been explored in detail using struc-
tural food-web data and models (e.g., Cohen and Newman 1991), but much of
the research on these properties falls outside strictly structural approaches (Post
2002). Constraints on food-chain length or trophic levels in ecosystems have of-
ten been attributed to dynamical stability or resource availability, although this
is increasingly questioned (e.g., Sterner et al. 1997) in favor of ecosystem size
(Post et al. 2000). Post (2002) suggests that the debate is shifting from the search
for singular explanations to “a complex and contingent framework of interacting
constraints that includes the history of community organization, resource avail-
ability, the type of predator-prey interactions, disturbance and ecosystem size.”
Although the nuances regarding such interacting constraints would seem to re-
quire the inclusion of data on relative flows along links to accurately characterize
food-chain lengths and trophic levels, complex binary food webs without such
flow data appear to provide a successful and simple quantitative framework for
analysis. For example, a binary link-based measure called short-weighted trophic
level yields surprisingly accurate estimates of species’ trophic and omnivory lev-
els as compared to flow-weighted data (Williams and Martinez 2004b).

5.4 INTERACTION STRENGTH

Most early structural food-web research concerning May’s stability criterion
(1973) generally focused on diversity (S) and connectance (C), the two pa-
rameters readily computed from structural data. Those analyses were based on
the implicit assumption that the third parameter, interaction strength (i), was
roughly constant. May’s analysis actually assigned interaction strengths ran-
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domly. From very early on, researchers noted that these assumptions are flawed
since interaction strengths are likely to vary non-randomly in real communities,
with ramifications for ecosystem structure and stability (e.g., Paine 1969, 1980).
One of the earliest analyses of this issue using structural food-web data was by
Yodzis (1981), who used 40 food webs (Briand 1983) to construct community
matrices based on structured interaction patterns. He found that stability, in
May’s sense, was far more likely to occur if interaction strengths are assigned
non-randomly based on ecological understanding. More recent research suggests
that “non-random patterning of strong and weak links can be critical for the
stability or persistence of theoretical and empirically observed complex commu-
nities” (Berlow et al. 2004; de Ruiter et al. 1995; Kokkoris et al. 1999; Neutel et al.
2002). There are many opportunities and pitfalls in interaction strength research,
as discussed in an excellent review by Berlow et al. (2004). Done thoughtfully,
such research can provide linkages between ecological network structure and dy-
namics, and can facilitate future links between theoretical work and experimental
and other empirical research.

5.5 INTEGRATING STRUCTURE AND DYNAMICS

Most models of food-web dynamics have focused on small modules with only
a few species (see review by Dunne et al. 2005). While topology is generally
thought to constrain ecological dynamics, most studies have explored this is-
sue using very simplified network structures that can be imposed on species-
poor dynamical models (see review by Jordán and Scheuring 2004). However,
researchers are increasingly integrating dynamics with complex food-web struc-
ture in modeling studies that move beyond modules. The Lotka-Volterra cascade
model (Cohen et al. 1990b; Chen and Cohen 2001a,b) was probably the first in-
carnation of this type of integration. As its name suggests, the Lotka-Volterra
cascade model runs classic L-V dynamics, including a non-saturating linear Type
I functional response, on sets of species interactions structured according to the
cascade model (Cohen and Newman 1985b). The cascade model was also used to
generate the structural framework for a recent dynamical food-web model with
a Type I functional response (Kondoh 2003) that was used to study the effects
of prey-switching on ecosystem stability. Improving on aspects of biological real-
ism of both dynamics and structure, Yodzis used a bioenergetic dynamical model
with nonlinear functional responses (Yodzis and Innes 1992), in conjunction with
empirically-defined trophic network structure among 29 species, to simulate the
biomass dynamics of a marine fisheries food web (Yodzis 1998, 2000). This bioen-
ergetic dynamical modeling approach has been integrated with cascade and niche
model network structure by other researchers (Brose et al. 2003; Williams and
Martinez 2004a; Martinez et al. Chapter 6).

All of the approaches mentioned, as well as others, have been used to ex-
amine a variety of aspects of food-web complexity and stability including per-
sistence, and are proving to be a valuable way to explore structural constraints
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on dynamics in complex ecosystems (Martinez et al. Chapter 6). An alternative
approach is to develop assembly models that include ecological and/or evolution-
ary dynamics and see if they generate plausible ecological diversity and network
structure (see review by McKane and Drossel Chapter 9), or to use methods such
as genetic algorithms to explore the space of dynamically possible or probable
structures (Ruiz-Moreno et al. Chapter 7). Integration of plausible ecological and
evolutionary dynamics and network structure is a grand challenge for ecological
modeling, with potential benefits for conservation and management of ecosys-
tems (Yodzis 1998, 2000), as well as for fundamental scientific understanding of
complex adaptive systems.

5.6 QUANTIFYING SPECIES AND LINKS

There have been many calls to go beyond species presence/absence data and
binary link designations to include quantitative aspects of species and/or links
during documentation and analysis of food webs (Cohen et al. 1993; Borer et
al. 2002). Obvious ways to quantify “species” include characterizing their popu-
lation abundance, population biomass, average individual biomass, and average
body size. Links can be quantified through the amount of flow, usually biomass,
attributable to the link (e.g., Baird and Ulanowicz 1989; Winemiller 1990), or
the frequency of the occurrence of the links (Martinez et al. 1999). While re-
searchers have compiled “quantitative” data for food-web components for as
long as predator-prey relationships and food webs have been objects of study, it
is only recently that some studies are attempting to integrate quantitative esti-
mates with comprehensive descriptions of complex food-web network structure.

For example, Bersier et al. (2002) introduced a set of quantitative descriptors
corresponding to several commonly studied food-web structure metrics (e.g., link
and species proportions, L/S, C, chain properties, omnivory, generality, vulnera-
bility). They used indices based on incoming and outgoing biomass flow for each
species, as inspired by prior ecological network analysis applications of informa-
tion theory (Ulanowicz 1986; Ulanowicz and Wulff 1991). Binary link metrics and
quantitative link metrics do not return the same values for the Chesapeake Bay
web (Baird and Ulanowicz 1989), and Bersier et al. (2002) suggest that their
combined use will provide the most insight into food-web structure and func-
tion. A follow-up study looking at ∼10 empirical webs with flow data suggests
that quantitative indices are more robust to variable sampling effort than met-
rics based on binary links, although precision decreased (Banašek-Richter et al.
2004). A different approach focusing on species traits was introduced by Cohen
et al. (2003), who document numerical abundance (varying across 10 orders of
magnitude) and average body size (varying across ∼ 12 orders of magnitude) for
each species in the detailed pelagic food web of Tuesday Lake, Michigan (Jon-
sson et al. in press). They characterize this approach as a new way to describe
ecological communities and they identify new community patterns for analysis.
The approach of Cohen et al. (2003) was used to describe the detrital soil food-
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web in agricultural grasslands in the Netherlands, where it may be helpful for
assessing land-use quality (Mulder et al. 2005).

While these and other “quantitative” approaches are intriguing, it remains
to be seen whether they are primarily a tool for richer description of particu-
lar ecological communities, or whether they also give rise to generalities, novel
models and predictions, or theory. Such approaches have much greater data re-
quirements than just trying to characterize network structure. In many cases it
will be difficult to document the necessary link and species characteristics given
time and monetary constraints. Also, many of the concerns about “binary” data
apply to “quantitative” data, and may be even more complicated to resolve. For
example, biomass flow along trophic links and levels of species abundances vary
spatiotemporally. A snapshot of a set of flows or abundances at a particular time
and in a particular space ignores variability that may result in a very misleading
picture of typical flow or abundance levels. Indeed, it may be difficult to char-
acterize “typical” or average levels that are ecologically meaningful. Additional
quantitative detail may be unnecessary for some kinds of investigations, since in-
dices based on binary link data can be a good proxy for, or improvement upon,
those based on richer quantitative data. For example, as previously mentioned,
calculation of mean trophic level for food webs using detailed flow data is well
approximated by a binary link-based structural index (Williams and Martinez
2004b). Also, species similarity measures based on binary link data outperform
flow-based similarity measures (Yodzis and Winemiller 1999).

5.7 ECOLOGICAL NETWORKS

The food webs that are the object of study of most of the research reviewed
in this chapter generally have as their focus classic predator-herbivore-primary
producer feeding interactions. However, the basic concept of food webs can be
extended to a broader framework of ecological networks that is more inclusive
of different components of ecosystem biomass flow, and that takes into consid-
eration different kinds of species interactions that are not strictly trophic. I give
three of many possible examples here. First, parasites have typically been given
short shrift in traditional food webs, although exceptions exist (Huxham et al.
1996; Memmott et al. 1999). Almost a decade after “a plea for parasites” in
food webs (Marcogliese and Cone 1997), there are still few food-web studies that
systematically incorporate or focus on parasites. Dobson et al. (Chapter 4) take
up this issue and explore it further. A second issue that has yet to be resolved
adequately for structural or dynamical food-web studies is the role of detritus,
or dead organic matter, in ecosystems. Detritus has been explicitly included as
one or several separate nodes in many binary-link and flow-weighted food webs.
In some cases, it is treated as an additional primary producer, while in other
cases both primary producers and detritivores connect to it. Researchers must
think much more carefully about how to include detritus in all kinds of ecolog-
ical studies (Moore et al. 2004), given that it plays a fundamental role in most
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ecosystems and has particular characteristics that differ from other food-web
nodes: it is dead and not living organic matter, it is heterogeneous, and it has
an ambiguous trophic role. The third example concerns the analysis of ecolog-
ical networks focused on other interactions besides strictly predator-prey rela-
tionships. Plant-animal mutualistic networks, particularly pollination and seed
dispersal networks, have received the most attention thus far, and their network
structure is discussed by Bascompte and Jordano (Chapter 5). While pollina-
tion and seed dispersal each involve a trophic interaction and can be portrayed
as two trophic level networks; unlike in a classic predator-prey relationship, a
strong positive benefit is conferred upon both partners in the interaction. The
evolutionary and ecological dynamics of such mutualistic relationships may place
unique constraints on the network structure of such interactions and the dynam-
ical stability of such networks (Jordano 1987; Memmott 1999; Jordano et al.
2003; Bascompte et al. 2003; Vásquez and Aizen 2004).

5.8 ECOINFORMATICS

Future food-web research will depend on the collection of and access to increas-
ingly high-quality data from systems spanning the globe. To address these needs,
and to help identify gaps in knowledge that can be filled with strategic sampling,
recent and historical food-web datasets are being compiled for a WWW-based
publicly accessible trophic interaction database. This database will be integrated
with structural and dynamical modeling tools as well as three-dimensional food-
web graphics and animation tools. This project, called Webs on the Web (WoW),
in effect updates and expands Cohen’s (1989) Ecologists Co-operative Web Bank
(ECOWeB), a set of over 200 “machine readable” food-web datasets, and adds
many layers of additional functionality and database capabilities. Initially, the
WoW knowledgebase will include hundreds of food-web datasets, thousands of
instances of consumer-resource relationships, and associated quantitative species
and link information where available. Database tools will facilitate the decentral-
ized addition of data to the knowledgebase, as well as annotation of existing data.
Ideally, WoW will increase the ability of scientists, managers, and students to ex-
change and analyze information regarding the structure, function, and dynamics
of ecological networks and the species within them.

Webs on the Web is just one example of an ever-expanding array of bio-
diversity-related databases that are, or will be, available on the WWW (Gra-
ham et al. 2004). In turn, these types of databases are just one of many kinds of
ecoinformatics tools, which include technologies and practices for gathering, ana-
lyzing, visualizing, storing, retrieving, and otherwise managing ecological knowl-
edge and information. There is a great deal of ecological information potentially
available on the WWW, but it is widely dispersed and comes in a large variety of
formats. Current search tools are very limited in their ability to effectively mine
the data. To address these issues, efforts are underway to develop languages and
tools for a Semantic Web that will allow for more sophisticated, content-based
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access to dispersed data and information on the WWW (Hendler 2003). Some of
these tools are being developed in an ecological network research context through
the Semantic Prototypes in Research Ecoinformatics project (spire.umbc.edu) in
conjunction with Webs on the Web (www.foodwebs.org). The emerging Semantic
Web technologies, if properly developed and widely implemented, have the po-
tential to transform the scope, effectiveness, and efficiency of ecological research
across spatial and temporal scales (Green et al. 2005).

6 FINAL THOUGHTS

It is a vibrant time for research on the structure and dynamics of complex sys-
tems. Food webs, and more broadly, ecological networks, are a paradigmatic
example of such systems. Research on complex food webs can not only benefit
from research on other types of networks, but can provide novel insights that
have implications for network research beyond ecology. However, as a caution-
ary note, what Lawton stated in 1989 is completely relevant today. Our data
are still limited and of highly variable quality, and we may come to realize that
some of the apparent generalities or universalities we see in that data are merely
artifacts of poor information. Fortunately, researchers have not succumbed to
“hand-wringing paralysis” given these limitations. However, the emergence of
novel ways of analyzing and modeling ecological network data need to be accom-
panied by meticulous collection of detailed, comprehensive field data that seeks
to address or overcome the previous empirical limitations. In addition, scientists
must make careful decisions about what data to use, and perhaps more impor-
tantly, what data not to use in analyses. Beyond the data issues, researchers
need to think continually about how to connect food-web properties, both struc-
tural and dynamical, back to issues of fundamental ecological interest, to avoid
chasing research down dead-end alleys of little scientific interest. While some
hand-wringers may continue to assert that research on food-web structure is one
of those unfortunate alleys, the rich history outlined here combined with the
recent tonic of interdisciplinary network research where it is well understood
that structure always affects function (Strogatz 2001), shows that ecological net-
work research is an important avenue for future advances. Such advances are
likely to occur both with regard to more applied concerns such as the response
of ecosystems to perturbations including biodiversity loss and species invasions
(Memmott et al. Chapter 14), as well as more basic research questions such as
identifying the processes or constraints that give rise to general structural pat-
terns. Thoughtful and careful development of ecological network data, analyses,
and models can provide the backbone for robust and general ecological theory
on the complex networks of interactions among species across many scales, espe-
cially if integrated with other macroecological theory on allometric scaling and
species-area relationships (Brose et al. 2004).
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Banašek-Richter, C., M-F., Cattin, and L-F. Bersier. 2004. “Sampling Effects
and the Robustness of Quantitative and Qualitative Food-Web Descriptors.”
J. Theor. Biol. 7:23–32.

Bascompte, J., P. Jordano, C. J. Melián, and J. M. Olesen. 2003. “The Nested As-
sembly of Plant-Animal Mutualistic Networks.” Proc. Natl. Acad. Sci. USA
100:9383–9387.

Berlow, E. L., A-M. Neutel, J. E. Cohen, P. De Ruiter, B. Ebenman, M. Emmer-
son, J. W. Fox, V. A. A. Jansen, J. I. Jones, G. D. Kokkoris, D. O. Logofet,
A. J. McKane, J. Montoya, and O. L. Petchey. 2004. “Interaction Strengths
in Food Webs: Issues and Opportunities.” J. Animal Ecol. 73:585–598.
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