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2.1 INTRODUCTION

Scientists have long strived to simplify and abstract nature into fundamental

categories and statements that could yield understanding of, and predictive

insight into, the phenomena they study. Only a few of such abstractions survive

the test of time and continue to yield both broad and deep scientific insights.

Here, we explore an ecological abstraction that many ecologists including

ourselves have found very useful and especially insightful. While it is only one

of many abstractions of population growth in nature, we focus on it here

because it appears likely to survive the difficult and important transition from

modeling a few trophically interacting species to modeling the large complex

networks more like those we see in nature. To survive this mission, we desire

maximum correspondence with nature and empirical tractability combined with

minimal complexity. That is, we want abstractions based on the fewest but most

useful and easily measured parameters in order to minimize the costs of

complexity while trying to model it.

This abstraction is the bioenergetic approach of Yodzis and Innes (1992) that

provided an important foundation for many further advances by Peter Yodzis

and other colleagues, especially his former student Kevin McCann (McCann

and Yodzis 1994, 1995, McCann and Hastings 1997, McCann et al. 1998) plus

further developments by many others (e.g., Fussman et al. 2000, Post et al. 2000,

Callaway and Hastings 2002, Brose et al. 2003, Williams and Martinez 2004,

Bascompte et al. 2005, Shurin and Seabloom 2005). At its core, the advance of

Yodzis and Innes (1992) was to distinguish two fundamental aspects of organ-

isms as central to the modeling of their feeding interactions and population

dynamics: body size and metabolic type. The relevance of body size to ‘‘metab-

olism’’ or the energetic maintenance cost of staying alive has recently become a

spectacularly successful and currently highly active research program (Whitfield

2004). Much earlier, Yodzis and Innes (1992) realized that the combination

between the biological importance and empirical ease of measuring body size

made it an ideal variable to incorporate into population dynamics. The other

distinction, that of metabolic type, recognizes that all bodies are not the same

and that, in particular, fundamental distinctions among plants, invertebrates

and endotherm, and ecotherm vertebrates needed to be made in order for body

size to reasonably predict both the metabolic and maximum assimilation rates

of organisms. Once such distinctions were made, each group of organisms could

be simply modeled as an undifferentiated stock of biomass that grows and

shrinks depending on losses to predation and metabolic costs and gains from

animal feeding activities and plant net primary production.

Though important and productive, the Yodzis and Innes approach is highly

abstract and rather difficult to comprehend in an intuitive manner. For

example, in the more useful nondimensional form of the model, several para-

meters, such as maximum assimilation rates, are numbers ‘‘per,’’ or relative to,

metabolic rate. Having struggled to embrace, employ, and expand the Yodzis
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and Innes approach, we have discovered important clarifications and charac-

terizations of their approach. This chapter redescribes their approach and how

it can be more rigorously applied to networks with many more species and also

to more mechanistic treatment of basal species such as plants that consume

abiotic resources in order to grow.

2.2 HISTORY OF CONTINUOUS TIME PREDATOR-PREY

POPULATION DYNAMIC MODELS

Historically, predator-prey population dynamics have been modeled with con-

tinuous time models that describe infinitesimally small changes of species i over

time in population numbers or biomasses, Bi, by differential equations for

dBi=dt. The prey population biomass, Bi, has an intrinsic growth, Gi, and

loses biomass to consumption by the predator population. The predator popu-

lation of species j, Bj , gains biomass by consumption and loses biomass due to

respiration and death. This yields the following set of differential equations:

dBi

dt
¼ BiGi(Bi)� BjFji(Bi) (2:1)

dBj

dt
¼ �BjTj þ BjejiFji(Bi) (2:2)

where Fji is the functional response that quantifies the dependence of per capita

of species j (unit Bj) consumption on the density of prey species i. The product of

predator density, Bj, with per capita consumption, Fji, yields the total consump-

tion. Tj is the sum of the metabolic and death rates of predator j and eji is the

efficiency of predator j at converting the biomass of prey i that predator j kills or

otherwise removes from prey i into predator j’s biomass. Early attempts used

linear interaction terms to describe the increase in per capita consumption with

prey density:

Fji ¼ ajiBi (2:3)

This ‘‘Lotka-Volterra’’ functional response assumes that the per capita con-

sumption does not saturate at high prey densities, which causes an infinite linear

increase of consumption with prey density. In response to this ecologically

unrealistic assumption, many empirical and theoretical studies described mul-

tiple forms of functional responses (Holling 1959, Real 1977, Murdoch and

Oaten 1975, Beddington 1975, DeAngelis et al. 1975, Arditi and Akcakaya

1990). All these studies described nonlinear functional responses with con-

sumption saturation at high prey densities (see examples below). These func-

tional responses can be prey-dependent (i.e., depend on the density of the

prey), predator-dependent (i.e., depend on the density of the predator), or

ratio-dependent (i.e., depend on the ratio of the predator to the prey). Imple-

mentations of these nonlinear functional responses in population-dynamic

models of the form (Eqs. (2.1, 2.2)) are known as McArthur-Rosenzweig models
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(Rosenzweig and MacArthur 1963). These models improve the Lotka-Volterra

model by using more realistic nonlinear functional responses, but just as in

Lotka-Volterra models, the parameters describing the species’ metabolic rates,

their maximum consumption (the saturation level of the functional response),

intrinsic production-biomass ratios of the prey population, and biomass

conversion efficiencies are parameters that are estimated independently and

are unrelated to species’ traits.

In their seminal work, Yodzis and Innes (1992) used allometric relationships

to relate production, metabolic, and maximum consumption rates to the spe-

cies’ body masses and their metabolic categories. This approach yields a model

that is intermediate in its level of detail, more constrained by known biological

properties of the system than some of the highly abstract models (e.g., Lotka-

Volterra and Rosenzweig-McArthur) that are studied, but less constrained than

a model tailored to a specific system. The use of allometric scaling introduced

empirical realism and parameter interdependence into the models, which sub-

stantially reduced the space of possible parameter combinations. Awareness of

this interdependence helped show that parameter combinations of species’

metabolic rates and maximum consumption rates that were previously thought

possible were shown to be impossible (e.g., compare McCann and Yodzis 1995

with Hastings and Powell 1991).

2.3 MULTISPECIES VERSION OF THE BIOENERGETIC MODEL

OF YODZIS AND INNES (1992)

The bioenergetic model of Yodzis and Innes (1992) is of the interaction between

one consumer and one resource. Here, we extend their formulation to multi-

species systems that may have multiple primary producers. For species that are

primary producers, their population’s rate of change of biomass over time is

given by

dBi

dt
¼ BiGi(B

*
)�

X

j¼predators

BjFji(B
*

)=feji: (2:4)

For species that are consumers, the rate of change of the biomass of its

population is given by

dBi

dt
¼ �BiTi þ Bi

X

j¼prey

eijFij(B
*

)�
X

j¼predators

BjFji(B
*

)=feji (2:5)

In these equations, Bi is the biomass of population i,Gi is the mass-specific net

growth rate of primary producer population i and is potentially a function of the

biomasses of any or even all of the populations in the system, Ti is the mass-

specific respiration rate, Fij is the rate of consumption of population j by

population i (i.e., the rate population j loses biomass due to consumption

activities of i such as herbivory, predation, infection), eij is an assimilation
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efficiency equal to the fraction of the biomass of species j lost due to consump-

tion by species i that is actually metabolized, and feij is ingestion efficiency equal

to the fraction of biomass lost from resource j that is actually ingested by

consumer i (e.g., some carnivores do not consume the whole of a kill nor do

parasitoids consume all of a host). Assimilation efficiency is separated from

ingestion efficiency because the former can theoretically be allometrically scaled

while the latter is less systematic and contingent on natural history of consump-

tion such as that between a nematode that causes a disease that kills a host and a

different nematode that parasitizes a host without killing it. The former nema-

tode has a much lower feij than the latter.

Equation 2.4 states that the rate of change of the primary producer’s biomass

is made up of two components. The first term is the gain in biomass from the

species’ intrinsic net growth that includes biomass gain from primary produc-

tion and biomass loss from metabolism. The second term is the loss of biomass

from consumption by each predator of the species. Similarly, the rate of change

of a consumer’s biomass (Eq. (2.5)) is made up of three parts. The first term is

the loss in biomass from the consumer metabolizing energy for respiration. The

second term is the gain in biomass from consuming various resource species.

The third term is the loss of biomass from consumption by each predator or

other consumer (herbivore, parasites, etc.) of the species.

The rate of ingestion of resource j by consumer i is given by a multispecies

functional response which saturates at some maximum ingestion rate. It is

convenient to assume that the functional response has the form

Fij(B
*

) ¼ JijF
_

ij(B
*

) (2:6)

where Jij is the maximum ingestion rate of prey item j by consumer i and F
_

ij(B
*

),

the normalized functional response, is a function that ranges between zero and

one and is potentially a function of the biomasses of all species in the system.

The mass-specific growth rate is assumed to be of the form

Gi(B
*

) ¼ riG
_

i(B
*

) (2:7)

where ri is the maximum mass-specific growth rate and G
_

i(B
*

), the normalized

growth rate, is a function whose maximum value is equal to one and is poten-

tially a function of the biomasses of all species in the system.

Using these expressions for the functional response and growth rate, the two

equations for the rate of change of biomass (Eqs. (2.4, 2.5)) can be written as

dBi

dt
¼ riBiG

_
i(B
*

)�
X

j¼predators

BjJjiF
_

ji(B
*

)=feji (2:8)

for primary producers; and

dBi

dt
¼ �BiTi þ Bi

X

j¼prey

eijJijF
_

ij(B
*

)�
X

j¼predators

BjJjiF
_

ji(B
*

)=feji (2:9)

for consumer species.
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Yodzis and Innes (1992) introduced allometric scaling relationships for the

physiological rates for the model described in Eqs. (2.8) and (2.9). These rates

are the intrinsic growth rate of the resources, the respiration rate of consumers,

and the maximum consumption rate of a resource by a consumer. To simplify

the model, all rates are assumed to scale as M0:75
i , where Mi is the body mass of

species i. Yodzis and Innes (1992) simply described Mi as ‘‘adult body masses

for the populations.’’ No reference is made as to whether this is the mean,

median, or more sophisticated estimate of the body mass that accurately char-

acterizes a population with variable body sizes within this model. Further

progress on this fundamental question has occurred only recently (Savage

2004, Economo et al. 2005). In any case, all rates are normalized to the chosen

species’ body mass. These mass-specific rates scale with M�0:25
i (¼M0:75

i =Mi).

The mass-specific respiration rate, Ti, is given by

Ti ¼ aTiM
�0:25
i (2:10)

The mass-specific maximum assimilation rate, eijJij , is given by

eijJij ¼ fJijaJiM
�0:25
i (2:11)

The mass-specific maximum growth rate of a producer species is given by

ri ¼ friariM
�0:25
i (2:12)

The constants aT , ar, and aJ , all with units of (mass0:25time
�1

) have been

determined from empirical data. Throughout the model, biomass is used as a

surrogate for energy, so rates of energy respiration are converted to rates of

biomass loss due to respiration and variations in energy content per unit

biomass in different organisms within a metabolic type are ignored. However,

these constants do vary between metabolic groups of organisms including

plants, invertebrates, and ectotherm and endotherm vertebrates but still remain

the same for species within the same metabolic group despite dramatic variation

in mean body mass (Yodzis and Innes 1992, Ernest et al. 2003, Brown et al.

2004). These values are not universal for the whole system when the system is

made up of species with different metabolic types. The constants fJij and fri are

fractional quantities whose value may be specified for each specific population

or feeding interaction in a particular ecological context.

One of the least intuitive aspects of this model concerns the model’s timescale.

Yodzis and Innes (1992) normalize time to the growth rate of the single primary

producer in their model. Here, time is normalized to the growth rate of a chosen

primary producer k (Eq. (2.12)) by introducing a new nondimensional time

variable t 0:

t ¼ t 0

rk

¼ t 0

frkarkM
�0:25
k

(2:13)

This means that a unit of time is defined as the inverse of the growth

rate of primary producer k. This time varies greatly, for example, between
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phytoplankton and redwood species. Once species k is chosen and time is scaled

accordingly, several constants are defined as follows:

ri ¼
friari

frkark

Mk

Mi

� �0:25

(2:14)

xi ¼
aTi

frkark

Mk

Mi

� �0:25

(2:15)

yij ¼
fJijaJi

aTi

(2:16)

The first parameter ri is the relative mass-specific growth rate of producer

species i normalized with the growth rate of the chosen producer species k.

Similarly, xi is the mass-specific metabolic rate of species i relative to the chosen

timescale of the system. Finally, the nondimensional constant yij is the max-

imum ingestion rate (biomass per unit time) of prey species j by predator species

i relative to the metabolic rate of species i (biomass per unit time).

This allows the governing Eqs. (2.8, 2.9) to be written as

dBi

dt0
¼ riBiĜi(B)�

X

j¼predators

xjyjiBjF̂ji(B)=fejieji (2:17)

for primary producers; and

dBi

dt0
¼ �xiBi þ xiBi

X

j¼prey

yijF̂ij(B)�
X

j¼predators

xjyjiBjF̂ji(B)=fejieji (2:18)

for consumer species.

Overall, the formulation of this population dynamic model by Yodzis and

Innes (1992) is based on three steps: (1) the parameters of the simple but highly

abstract population dynamic model (Eqs. (2.8, 2.9)) are reformulated as mass-

specific parameters (2.10–2.12). This allows seeding the model based on regres-

sions that yield key parameters as a function of species’ body mass; (2) time is

nondimensionalized using the inverse of the maximum growth rate of producer

k (2.13), so the model’s time scale is expressed relative to the growth rate of that

producer; (3) the mass-specific growth and metabolic rates of the model are

normalized by the time scale (Eqs. (2.14, 2.15)), while the maximum ingestion

rate is normalized by the metabolic rate (Eq. (2.16)). These three steps yield a

population dynamic model with mass-specific parameters using a time-scale

based on the growth rate of a chosen primary producer (Eqs. (2.17, 2.18)).

2.3.1 Parameter values

Key parameters include three very general constants; ai for each metabolic

category of the species, three fractions fi with values between zero and one

that depend on the specific ecological circumstances of the system being
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modeled, and the efficiency eij that simply depends on whether the resource is a

plant or animal. The values given in Yodzis and Innes are collected below.

Endotherm Vertebrate ectotherm Invertebrate Phytoplankton

aT (kg0:25year
�1

) 54.9 2.3 0.5

aJ (kg0:25year
�1

) 89.2 8.9 9.7

ar(kg0:25year
�1

) 34.3 6.6 9.2 0.4

Plant resource Animal resource

eij 0.45 0.85

fr Of the order 0.1

fJ 1.0 (endotherms), 0.2 (ectotherms), 0.3 (invertebrates)

fe 1 for grazers and parasites; < 1 for some carnivores

To fully specify the model, the normalized growth function and functional

response need to be defined.

2.4 GROWTH RATE MODELS

The simplest resource growth model is unconstrained exponential growth, in

which case Ĝi(B) ¼ 1. The more advanced and commonly used logistic growth

model which decreases the growth of a species as it reaches and exceeds its

carrying capacity is given by

Ĝi(B) ¼ 1� Bi=Ki (2:19)

where Ki is the system’s carrying capacity for producer species i. These two

growth models are specific in two ways: (i) they describe net-growth that

includes gross primary production as well as metabolism, and (ii) they do not

account for effects of shared-resource consumption such as competition

amongst primary producers in a multispecies community. To address (ii) in a

community with multiple primary producer species (Brose et al. 2005), growth

can be modeled as a function of the consumption of l limiting physical resources

Rl (Tilman et al. 1997, Huisman and Weissing 1999):

Ĝi(B, R) ¼MIN
R1

K1i þ R1

, . . . ,
Rl

Kli þ Rl

� �

(2:20)

Kli is the half saturation constant for resource l, and MIN is the minimum

operator specifying that the least available resource relative to its half saturation

constant limits growth of the producer. These half saturation constants indicate

the nutrient concentration at which the consumer attains half its maximum rate

of nutrient consumption. The variation of resource l’s density with time is given

44 Richard J. Williams et al.



by a two-term equation where the first calculates abiotic effects on resources

concentration and the second term calculates effects of biotic consumption:

dRl

dt
¼ D(Sl � Rl)�

X

i¼producers

(cliĜi(R)Bi) (2:21)

where cli is the fraction of resource l in the biomass of producer species i.

The resource dynamics depend on a turnover rate D that is one divided by the

mean residence time of the nutrient in its abiotic matrix (e.g., water, soil).

Resource l is added to the matrix with a supply concentration of Sl , and its

removal depends on the current resource content of the system, Rl . This Monod

model of growth is well-established in plant ecology and the producer species

compete by utilizing shared physical resources (Miller et al. 2005). The compe-

tition hierarchy is based on the half saturation constants, where lower Kli

indicate ‘‘utilization efficiencies’’ or higher consumption rates at nonsaturating

resource concentrations for primary producer species i consuming the physical

resource l.

2.5 FUNCTIONAL RESPONSES

We discuss here multispecies versions of a few of the many models of func-

tional response that have been studied. It is well known that the stability of

small systems is quite sensitive to the choice of the functional response (e.g.,

DeAngelis et al. 1975, Murdoch and Oaten 1975, Yodzis and Innes 1992), and

preliminary work shows that large systems are similarly sensitive (Williams and

Martinez 2004). For more complete reviews of this very important and difficult

topic, see Gentleman et al. (2003) and Jeschke et al. (2002).

2.5.1 Type II multispecies functional responses

Holling (1959) described the changing feeding rate of a predator in response to

variations in prey density. In his type II functional response model, the predator

divides its time between searching for prey, during which prey is captured at

some fixed rate, and processing captured prey, during which time no searching

takes place. If a is the rate of capture rate (units 1/time), b is the handling time

(units: time/prey), and D is the prey density (number of individuals), then the

rate of consumption of the predator, F, is the maximum amount potentially

captured divided a term that decreases this rate as handling time increases above

zero:

F ¼ aD

1þ abD
(2:22)

Murdoch (1973) generalized Holling’s (1959) type II functional response

to predators with multiple prey by lowering the maximum possible amount
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captured of a single species by a term in the denominator that sums the time

needed to handle all prey species captured:

Fij ¼
aijDj

1þ
P

k

aikbikDk

(2:23)

Here Fij is the rate at which species j is consumed by the predator i, Dj is the

density of species j, aij is rate at which the predator i attacks species j and bij is

the time it takes predator i to handle prey item j.

Defining cij ¼ 1=bij as the maximum rate at which predator i can consume prey

j in the absence of other prey and D0ij ¼ 1=aijbij as the half-saturation density of

predator i on prey j in the absence of other prey, this can be rewritten as

Fij ¼
cijDj=D0ij

1þ
P

k

Dk=D0ik

(2:24)

2.5.2 Non-type II multispecies functional responses

If the attack rate is a function of the density of the prey, then the model of

predation can relax predation pressure on rare prey more than the type II

model. This can give rise to a sigmoidal, or type III functional response (Holling

1959). Predator interference can also modify the attack rate. In this case the

attack rate decreases with increasing prey density (Beddington 1975, DeAngelis

et al. 1975) compared to the rate given by the type II model. In general, rather

than being constant, the attack rate a in (2.22) or aij in (2.23) is made a function

of the predator and prey densities âij(Di, Dj), but otherwise the functional

response given in (2.22) or (2.23) is unchanged.

2.5.3 Type III

Real (1977) introduced a generalized type III functional response by defining

âij ¼ aijD
q
j . When q¼ 0 in the equation below, (Eq. (2.25)) reduces to the attack

rate used in the standard type II response (Eq. (2.22)). Using the half-saturation

density of the prey as a natural scale for a feeding interaction suggests using an

attack rate of the form âij ¼ aij(Dj=D0ij)
q. The functional response is then

Fij ¼
cij(Dj=D0ij)

1þq

1þ
P

k

(Dk=D0ik)
1þq

(2:25)

2.5.4 Predator interference

Beddington (1975) and DeAngelis et al. (1975) independently proposed a func-

tional response in which predators spend some of their foraging time interacting

with members of their own species, which reduces the rate at which predators
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capture prey. Assuming that this effect is the same for all prey species and that

aij,Interference ¼ aij,NoInterference=(1þ diNi) where di is a positive constant that de-

scribes the amount of interference and Ni is the number of individuals of

predaceous species i, the resulting functional response is

Fij ¼
cij(Dj=D0ij)

1þq

1þ diDi þ
P

k

(Dk=D0ik)
1þq

: (2:26)

The preceding functional responses are for the rate at which a predator con-

sumes individual prey items. By redefining the various parameters as per unit

biomass rather than per individual, the functional response (Eq. (2.26)) can be

rewritten in the form used in Eq. (2.6):

Fij ¼ JijF
_

ij (B
*

) ¼ Jij

(Bj=B0ij)
1þq

1þ diBi þ
P

k

(Bk=B0ik)
1þq

(2:27)

Here Bi is the biomass of species i, B0ij is the half-saturation biomass of predator

i consuming prey j, and Jij is the maximum rate at which predator i can consume

prey j (biomass per unit time).

It is informative to look at the role of the various parameters in this func-

tional response in determining prey preference. Following the analysis of Ches-

son (1983) and Gentleman et al. (2003), and using the notation introduced

above for biomass-based functional response (Eq. (2.27)), a predator’s relative

preference of one resource over another is defined as

pijk ¼
Fij=Bj

Fik=Bk

¼
JijB

q
j =B

1þq
0ij

JikB
q

k=B
1þq

0ik

,

where the predator is species i and the two prey species are j and k. The term

‘‘switching’’ is used to describe situations in which the preference changes with

changes in the relative resource density Bj=Bk. In the terminology of Gentleman

et al. (2003), when q ¼ 0 the response is class 1 and has no switching, and when

q 6¼ 0, the response is class 2 and has passive switching.

For the type II response (q ¼ 0), the preference is

pijk ¼
Jij=B0ij

Jik=B0ik

This shows that a resource species is preferred either because its consumer

species has a greater maximum rate of intake of the resource species or the

consumer has a smaller half-saturation density for the resource. When the

passive switching of a type III response is added, a resource will also be

preferred when it has a higher relative density.
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2.6 CONCLUSION

With this modeling framework that extends Yodzis and Innes (1992) nonlinear

approach to many species systems and functional responses, a new frontier of

more empirically-based theoretical explorations of the structure and dynamics

of complex networks is opened to researchers. Early explorations have shown,

for example, that 50-species networks that allow most species to persist have

food-web structure more like the empirically corroborated ‘‘niche model’’ than

the ecologically unrealistic ‘‘cascade’’ and ‘‘random’’ models (Martinez et al.

2006). Such explorations have also shown how small variations in functional

Table 2.1. Mathematical expression and their descriptions

Expression Description

dBi=dt Change in population density of species i with time t

Bi Population density of species i

Gi Mass-specific net growth of species i

Ti Mass-specific respiration (metabolic growth rate)�1 of species i

ri Maximum mass-specific growth rate of species i

Fij Functional response ¼ the fraction of the maximum consumption rate of the

population of species i by the population of species j (i.e., per capita consumption

of j by i)

eij Assimilation efficiency ¼ fraction of the biomass of species j lost due to feeding by

species i that is metabolized by species i

feij Ingestion efficiency ¼ fraction of biomass of species j lost due to feeding by species i

that is ingested by species i

aji Attack rate of j on i

(BV) Biomass loss from metabolism

Jij The population of species i’s maximum rate of ingesting the population of species j

Gi Normalized growth rate of species i

Mi Adult body mass among the population of species i

aTi Mass to respiration conversion constant for species i

aJi Mass to assimilation conversion constant for species i

ar, Mass to growth conversion constant for species i

fJ , fr Fractional constants

xi Constant mass-specific metabolic rate of species i relative to the maximum growth

rate of a chose producer species

yij Maximum ingestion rate of resources species j by consumer species i relative to

metabolic rate of species i

ri Relative mass-specific growth rate of producer species i

Ki System’s carrying capacity for resource I

Rl Limiting physical resources

l A particular resource

cli Fraction of resource l that comprises the biomass of producer species i

D (Eq. (2.21)) turnover rate of resources

D (Eq. (2.22)) prey density

d Positive constant describing amount of interference (Eq. (2.26))

B0ij Half-saturation biomass of predator I consuming prey j

q Control parameter within functional response equations
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responses have dramatic effects on the stability and persistence of species

within the simulated networks (Williams and Martinez 2004). Body-size ratios

have also been shown to have similarly dramatic effects which help explain a

recently discovered systematic difference between the body-size ratios of

endotherm and ectotherm vertebrate predators (Brose et al. in review). Fur-

thermore, this framework has been applied to the analysis of keystone effects

which found that increased nutrient supply can systematically increase the

strength of interactions measured by simulating the removal of keystone

species from complex ecological networks (Brose et al. 2005). This of course

points the way towards more compelling theoretical investigations of applied

issues such as the effects of biodiversity loss and species invasions (Gibbs

2003) but such applications are not without significant problems (Paine

2004, Martinez and Dunne 2004).

Addressing these and many other challenges of modeling and managing

ecosystems will involve a great deal of work to understand the sensitivity of

simple and complex models to their many parameters described here. These

parameters are needed to base models firmly on ecological observations while

attempting to predict ecosystem behavior. Others have found that even more

parameters are needed to successfully apply Yodzis and Innes’ approach to even

simple 2-species systems in chemostats (Shertzer et al. 2002). This means that

more work is needed beyond understanding and empirically-basing model

parameters before application of such models to specific complex ecological

systems. For example, beyond the evolution parameters incorporated by Shert-

zer et al. (2002), better models of multispecies functional responses are needed

(Gentleman et al. 2003). The specific functional response or responses used in

the model and the values of the various parameters these responses introduce

should be based on empirical knowledge of the system of interest. In addition,

the approach presented here could also easily be extended to include the effects

of temperature variation on system stability using the methods developed in

Vasseur and McCann (2005). While conducting such work is clearly a hugely

difficult and important challenge, we thank Peter Yodzis and his coworkers for

making spectacularly important contributions to addressing the challenge and

providing some of the most creative and rigorous foundations for current and

future research on complex ecosystems.
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