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A simple dynamical system

We can describe the dynamics of a population through time by
means of an autonomous ordinary differential equation:

One Population

dX (t)

dt
= f (X (t)) (1)

Where:

X (t)→ density (or biomass) of population X at time t.

f (X (t))→ function of X (t).
dX (t)

dt → rate of change.

In the remainder of the talk we will write X for X (t).
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Equilibrium

The population reaches a fixed point when:

Equilibrium

dX

dt
= 0 = f (X ) (2)

We will indicate with X ∗ the solution of the equation above.

If X ∗ > 0→ feasible equilibrium.

If X ∗ = 0→ extinction.

If X ∗ < 0→ unfeasible equilibrium.

We are typically interested in feasible equilibria only.
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Stability

Say that the population is at a fixed point X ∗. What happens if we
perturb it (i.e. we move the population to X ∗ + x(t)? Does the
system recover from the perturbation?

Figure adapted from Soetaert and Herman, 2009



Stability of simple dynamical systems Stability in multispecies communities Ecological implications

Stability: graphical methods

dX

dt
= rX

(
1− X

K

)
− θ X

X + h
(3)
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Figure adapted from Soetaert and Herman, 2009
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Stability: two populations

dX

dt
= fX (X ,Y )

dY

dt
= fY (X ,Y )

Simple predator-prey system

X is the prey

Y is the predator

dX

dt
= (b − d)X

(
1− X

K

)
− αXY

dY

dt
= αεXY −mY
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Stability: two populations

Simple predator-prey system

dX

dt
= (b − d)X

(
1− X

K

)
− αXY

dY

dt
= αεXY −mY

b is the birth and d the death rate for the prey.

K is the carrying capacity for the prey (max. possible level).

α is the interaction term, modeling the probability of
“effective encounters”.

ε is the efficiency of the predator.

m is the death rate for the predator.
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When there is no predator

dX

dt
= (b − d)X

(
1− X

K

)
The equilibrium values are:

0 = (b − d)X

(
1− X

K

)
→ X ∗ = 0, X ∗ = K



Stability of simple dynamical systems Stability in multispecies communities Ecological implications

When predators are present

dX

dt
= (b − d)X

(
1− X

K

)
− αXY

The equilibrium values are:

0 = (b − d)X

(
1− X

K

)
− αXY →

X ∗ = 0,

Y =
b − d

α

(
1− X ∗

K

)
This is called the zero isocline for X .
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Isocline for the predator

dY

dt
= αεXY −mY

The equilibrium values are:

0 = αεXY −mY

Y ∗ = 0,

X =
m

εα

This is called the zero isocline for Y .
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Phase Plane
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Trajectories
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Trajectories
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Trajectories
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Stability in multiple species communities

dXi

dt
= fi (X1, . . . ,Xn)

Feasible Equilibrium:

fi (X1, . . . ,Xn) = 0 ∀i

X ∗
i > 0 ∀i

How to evaluate stability of equilibria?
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Perturbation

Xi (t) = X ∗
i + xi (t)

We want to study if the perturbation xi grows or tends to zero.
We can write the change in the growth rate of x (using Taylor
expansion):

dxi

dt
=
∑

j

αijxj (4)

We can rewrite the system in matrix form:

dx

dt
= Ax (5)
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Community matrix

dx

dt
= Ax

A is the community matrix for the system. A is defined as:

A [αij ] =
∂fi
∂Xj

∣∣∣∣
X∗

1 ,...,X
∗
n

We can rewrite the effects of a perturbation studying the
eigenvalues of the community matrix:

dxi

dt
=
∑

j

γije
λj t (6)

Depending on the sign of the eigenvalues we can classify the
equilibrium.
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Eigenvalues

Eigenvalues can have real and imaginary parts λj = rj ± icj . We
can classify systems behavior after a perturbation according to the
signs of eigenvalues.

rj cj System Behavior after Perturbation

< 0, ∀j 0, ∀j Stable: returns to the fixed point monotonically.
< 0, ∀j 6= 0, ∃j Stable: returns to the fixed point with damped oscillations.
= 0, ∀j 0, ∀j Neutrally stable: moves to a new fixed point.
= 0, ∀j 6= 0, ∃j Neutrally stable: sustained oscillations.
> 0, ∀j 0, ∀j Unstable: moves monotonically away from the fixed point.
> 0, ∀j 6= 0, ∃j Unstable: moves away with increasing oscillations.

If the eigenvalues of matrix A λi all have negative real parts,
Re(λi ) < 0 ∀i , then the equilibrium X ∗ is Lyapunov stable: the
system will return to the fixed point when perturbed.
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A simple example

{
dX
dt = X

(
1− X

K

)
− pXY

dY
dt = pXY −mY

Equilibria{
X ∗ = 0

Y ∗ = 0

{
X ∗ = K

Y ∗ = 0

{
X ∗ = m

p

Y ∗ = 1
p

(
1− m

Kp

)
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A simple example

{
dX
dt = X

(
1− X

K

)
− pXY

dY
dt = pXY −mY

Jacobian

∂ dX
dt

∂X
= 1− 2X

K
− pY

∂ dX
dt

∂Y
= −pX

∂ dY
dt

∂X
= pY

∂ dY
dt

∂Y
= pX −m
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A simple example

Jacobian

∂ dX
dt

∂X
= 1− 2X

K
− pY

∣∣∣∣∣
X∗,Y ∗

= − m

Kp

∂ dX
dt

∂Y
= −pX

∣∣∣∣∣
X∗,Y ∗

= −m

∂ dY
dt

∂X
= pY

∣∣∣∣∣
X∗,Y ∗

= 1− m

Kp

∂ dY
dt

∂Y
= pX −m

∣∣∣∣∣
X∗,Y ∗

= 0
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A simple example

Community Matrix

C =

[
− m

Kp −m

1− m
Kp 0

]

Char Poly

Det(C− λI) = 0 =

∣∣∣∣∣ − m
Kp − λ −m

1− m
Kp −λ

∣∣∣∣∣
Char Poly

Det(C− λI) = 0 = λ2 + λ
m

Kp
+ m

(
1− m

Kp

)
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A simple example

Char Poly

Det(C− λI) = 0 =

∣∣∣∣∣ − m
Kp − λ −m

1− m
Kp −λ

∣∣∣∣∣
Char Poly

Det(C− λI) = 0 = λ2 + λ
m

Kp
+ m

(
1− m

Kp

)

Eigenvalue

λ1,2 =
−m ±

√
m2 + 4Kmp − 4K 2p2m

2Kp
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Example: K=10, m=0.1, p=0.1

Eigenvalue

λ1,2 = −0.05± 0.947i
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May Argument: Networks

S Species
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May Argument: Networks

Self Limitation (mii < 0). Dots stand for negative coefficients.
Arrows for positive coefficients.
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May Argument: Networks

Two species interact with probability C (Connectance).
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May Argument: Networks

Two species interact with probability C (Connectance).

The signs of interaction and interaction strengths are random
(Standard Normal Distribution)
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May Argument: Main Result

Probability of stability → 0 (for large communities) when:

σ2
√

SC > 1

This relation tells us that the probability of stability, for a
given variance, tends to 0 when the richness or the
connectance of the system are large enough.

Therefore, according to this argument, we would not expect
to observe rich, highly interconnected ecosystems.
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May Argument: Main Result - Numeric Simulations
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May Argument: Consequences

This is one of the most influential articles in theoretical
ecology.

The statement that complex, rich systems are unstable has
been attacked from different angles (functional responses,
persistence, other types of stability).

Although this work was published in 1972, it is still important
for recent papers.
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Predator-Prey: Networks

S Species
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Predator-Prey: Networks

Self Limitation (mii < 0). Dots stand for negative coefficients.
Arrows for positive coefficients.
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Predator-Prey: Networks

Two species interact with probability C/2. The interaction is
always predator-prey (+/-). The Connectance is therefore C .
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Predator-Prey: Networks

Two species interact with probability C/2. The interaction is
always predator-prey (+/-). The Connectance is therefore C .

The signs of interaction are fixed, but interaction strengths are
random (Standard Normal Distribution).
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May Argument: Main Result - Numeric Simulations
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Predator-Prey - Numeric Simulations
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Qualitative Stability
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Qualitative Stability
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Alternatives to dominant eigenvalue
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Weak interactions
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Asymmetric interactions
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