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A simple dynamical system

We can describe the dynamics of a population through time by
means of an autonomous ordinary differential equation:

One Population
dX(t)
—— =f(X(t 1
D rxo) 1)
Where:
@ X(t) — density (or biomass) of population X at time t¢.
e f(X(t)) — function of X(t).

d)flgt) — rate of change. )

In the remainder of the talk we will write X for X(t).
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Equilibrium

The population reaches a fixed point when:

Equilibrium
dX
— =0=f(X 2
- (X) )
We will indicate with X* the solution of the equation above.

e If X* > 0 — feasible equilibrium.

e If X* =0 — extinction.

o If X* < 0 — unfeasible equilibrium.

We are typically interested in feasible equilibria only.



Stability of simple dynamical systems
ooe

Stability

Say that the population is at a fixed point X*. What happens if we
perturb it (i.e. we move the population to X* + x(t)? Does the
system recover from the perturbation?

Y

Figure adapted from Soetaert and Herman, 2009
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Stability: graphical methods
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Figure adapted from Soetaert and Herman, 2009
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Stability: two populations

dX

(XY
dt X( ) )
dYy

= A(X,Y

Simple predator-prey system

o X is the prey
@ Y is the predator

(b— d)X <1_ );) —aXxy

Y
d— = aeXY —mY

dt

dX

dt
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Stability: two populations

Simple predator-prey system

dX X

— =(b—dX[1-—~—= ] —aXY

g = )< K) “
ﬂ:anY—mY
dt

b is the birth and d the death rate for the prey.
K is the carrying capacity for the prey (max. possible level).

« is the interaction term, modeling the probability of
“effective encounters”.

€ is the efficiency of the predator.

m is the death rate for the predator.
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When there is no predator

%:(b—d)X <1—)}§>

The equilibrium values are:

X
Oz(b—d)X(l—K>—>X*:0,X*:K
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When predators are present

dX X
P b-d)X [1-2) —axy
7 (b—d) ( K) a

The equilibrium values are:

Oz(b—d)X(l—i)—aXYe
X* =0,

b—d (. X*

= (%)

This is called the zero isocline for X.
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Isocline for the predator

ﬂ = aeXY — mY
dt

The equilibrium values are:

0 =aeXY —mY

y* =0,
x="1
€

This is called the zero isocline for Y.
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Phase Plane
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Trajectories
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Stability in multiple species communities

Feasible Equilibrium:

f(X1, ..., Xn) =0 Vi

X >0Vi

How to evaluate stability of equilibria?
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Perturbation

Xi(t) = X" + xi(t)

We want to study if the perturbation x; grows or tends to zero.
We can write the change in the growth rate of x (using Taylor

expansion): )
I
= Z QX (4)
J

We can rewrite the system in matrix form:

dx

e Ax (5)
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Community matrix

dx
— =A
dt —
A is the community matrix for the system. A is defined as:
of;
Ala:] = —©
= 0%

We can rewrite the effects of a perturbation studying the
eigenvalues of the community matrix:

dX,' .
g Z et (6)
J

Depending on the sign of the eigenvalues we can classify the
equilibrium.
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Eigenvalues

Eigenvalues can have real and imaginary parts \; = r; £ icj;. We
can classify systems behavior after a perturbation according to the
signs of eigenvalues.

1y G System Behavior after Perturbation
<0,V 0, Vj Stable: returns to the fixed point monotonically.
<0, Vj | #£0, Jj | Stable: returns to the fixed point with damped oscillations.
=0,V 0, Vj Neutrally stable: moves to a new fixed point.
=0, Vj | #0, 3j | Neutrally stable: sustained oscillations.
>0, V) 0, Vj Unstable: moves monotonically away from the fixed point.
>0, Vj | #0, 3j | Unstable: moves away with increasing oscillations.

If the eigenvalues of matrix A )\; all have negative real parts,
Re(\;) < 0 Vi, then the equilibrium X* is Lyapunov stable: the
system will return to the fixed point when perturbed.
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A simple example

ax
Y — pXY — mY

{dx—x(1—>,§)—va
dt

Equilibria
{X*:O {X*:K {X*z%

* * * 1 — U,

Y =0 |Y*=0 Y_p<1 K'"p)
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A simple example

(oxupoo

Y = pXY —mY

dX
Hax 2X
oX K
dX
0G
oY
dY
O
oX
dY
0%
oY
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A simple example

3‘% _ 2X y m
ox Kk P T Kp
X*, Y
X
oy = PX -
X*,Y*
dy
0X Kp
X*,Y*
o9y
dt
=pX —m =0
oY e
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A simple example
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A simple example

Det(C — A\l) =0 =

Char Poly

et(C— A) =0 )\+)\Kp+m< Kp)

Eigenvalue

—m= /m2 4+ 4Kmp — 4K2p2m
2Kp

A2 =
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Example: K=10, m=0.1, p=0.1

Eigenvalue

A12 = —0.05+£0.947i

population

10

time
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May Argument: Networks
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Self Limitation (m;; < 0). Dots stand for negative coefficients.
Arrows for positive coefficients.
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May Argument: Networks
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3 0

Two species interact with probability C (Connectance).
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May Argument: Networks

3 0
Two species interact with probability C (Connectance).

The signs of interaction and interaction strengths are random
(Standard Normal Distribution)
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May Argument: Main Result

@ Probability of stability — 0 (for large communities) when:
o*VSC > 1

@ This relation tells us that the probability of stability, for a
given variance, tends to 0 when the richness or the
connectance of the system are large enough.

@ Therefore, according to this argument, we would not expect
to observe rich, highly interconnected ecosystems.
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May Argument: Main Result - Numeric Simulations
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May Argument: Consequences

@ This is one of the most influential articles in theoretical
ecology.

@ The statement that complex, rich systems are unstable has
been attacked from different angles (functional responses,
persistence, other types of stability).

@ Although this work was published in 1972, it is still important
for recent papers.
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Theor Ecol (2008) 1:55-64
DOI 10.1007/s12080-007-0007-8

ORIGINAL PAPER

Network structure, predator—prey modules,
and stability in large food webs

Stefano Allesina - Mercedes Pascual
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Predator-Prey: Networks
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Self Limitation (mj; < 0). Dots stand for negative coefficients.
Arrows for positive coefficients.
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Predator-Prey: Networks

Two species interact with probability C/2. The interaction is
always predator-prey (4/-). The Connectance is therefore C.
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Predator-Prey: Networks

Two species interact with probability C/2. The interaction is
always predator-prey (+/-). The Connectance is therefore C.

The signs of interaction are fixed, but interaction strengths are
random (Standard Normal Distribution).
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May Argument: Main Result - Numeric Simulations
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Predator-Prey - Numeric Simulations
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Qualitative Stability

DISCUSSION PAPER:

THE QUALITATIVE ANALYSIS OF PARTIALLY
SPECIFIED SYSTEMS

Richard Levins

Department of Biology
University of Chicago
Chicago, Illinois 60637
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Qualitative Stability

VOL. 161, NO. 6 THE AMERICAN NATURALIST JUNE 2003

Qualitative Stability and Ambiguity in Model Ecosystems

Jeffrey M. Dambacher,"" Hang-Kwang Luh,*" Hiram W. Li,*** and Philippe A. Rossignol**

ABSTRACT: Qualitative analysis of stability in model ecosystems has
previously been limited to determining whether a community matrix
is sign stable or not with little analytical means to assess the impact
of complexity on system stability. Systems are seen as either uncon-
ditionally or conditionally stable with little distinction and therefore
much ambiguity in the likelihood of stability. First, we reexamine
Hurwitz’s principal theorem for stability and propose two “Hurwitz
criteria” that address different aspects of instability: positive feedback
and insufficient lower-level feedback. Second, we derive two quali-
tative metrics based on these criteria: weighted feedback (wF,) and
weighted determinants (wA,). Third, we test the utility of these qual-
itative metrics through quantitative simulations in a random and
evenly distributed parameter space in models of various sizes and
complexities. Taken together they provide a practical means to assess
the relative degree to which ambiguity has entered into calculations
of stability as a result of system structure and complexity. From these
metrics we identify two classes of models that may have significant
relevance to system research and management. This work helps to
resolve some of the impasse between theoretical and empirical dis-
cussions on the complexity and stability of natural communities.
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Alternatives to dominant eigenvalue

Ecology, 78(3), 1997, pp. 633-665
5 1997 by the Ecological Society of America

ALTERNATIVES TO RESILIENCE FOR MEASURING THE RESPONSES OF
ECOLOGICAL SYSTEMS TO PERTURBATIONS

MrcHAEL G. NEUBERT AND HarL CASWELL

Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543 USA

Abstract. Resilience is a component of ecological stability; it is assessed as the rate
at which perturbations to a stable ecological system decay. The most frequently used
estimate of resilience is based on the eigenvalues of the system at its equilibrium. In most
cases, this estimate describes the rate of recovery only asymptotically, as time goes to
infinity. However, in the short term, perturbations can grow significantly before they decay
and eigenvalues provide no information about this transient behavior. We present several
new measures of transient response that complement resilience as a description of the
response to perturbation. These indices measure the extent and duration of transient growth
in models with asymptotically stable equilibria. They are the reactivity (the maximum
possible growth rafe immediately following the perturbation), the maximum amplification
(the lnszesr proportional deviation that can be p:od\ued by an) perturbation), and the time
at which this ampl occurs. We d 1 of these indices using
previously published linear compartment models (two models for phosphorus cycling
through a lake ecosystem and one for the flow of elements through a tropical rain forest)
and a standard nonlinear predator—prey model. Each of these models exhibits transient
growth of perturbations, despite asymptotic stability. Measures of relative stability that
ignore transient growth will often give a misleading picture of the response to a perturbation.

Key words 1 models; eige pulse p ions; reactivity; relative stabiliry;
resilience; return time; transient vs. asymplotic dvnamics
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Weak interactions

Stability in Real Food Webs:
Weak Links in Long Loops

Anje-Margriet Neutel,”* Johan A. P. Heesterbeek,?
Peter C. de Ruiter’

Increasing evidence that the strengths of interactions among populations in
biological communities form patterns that are crucial for system stability
requires clarification of the precise form of these patterns, how they come
about, and why they influence stability. We show that in real food webs,
interaction strengths are organized in trophic loops in such a way that long loops
contain relatively many weak links. We show and explain mathematically that
this patterning enhances stability, because it reduces maximum “loop weight"
and thus reduces the amount of intraspecific interaction needed for matrix
stability. The patterns are brought about by biomass pyramids, a feature
common to most ecosystems. Incorporation of biomass pyramids in 104 food-
web descriptions reveals that the low weight of the long loops stabilizes
complex food webs. Loop-weight analysis could be a useful tool for exploring
the structure and organization of complex communities.
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Asymmetric interactions

Asymmetric Coevolutionary Networks
Facilitate Biodiversity Maintenance

Jordi Bascompte,** Pedro Jordano,* Jens M. Olesen®

The mutualistic interactions between plants and their pollinators or seed dispersers have

played a major role in the maintenance of Earth’s biodiversity. To investigate how coevolutionary
interactions are shaped within species-rich communities, we characterized the architecture of an
array of quantitative, mutualistic networks spanning a broad geographic range. These coevolutionary
networks are highly asymmetric, so that if a plant species depends strongly on an animal species,
the animal depends weakly on the plant. By using a simple dynamical model, we showed that
asymmetries inherent in coevolutionary networks may enhance long-term coexistence and facilitate
biodiversity maintenance.
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