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Abstract

We consider interactions between a symbiont and its host in the framework of the familiar Lotka–Volterra predator–prey
model, modified to allow the symbiont to benefit the host. The model includes both benefits and costs to the interaction and spans
the mutualism–parasitism continuum. We use this model to explore the shift from mutualism to parasitism in plant–mycorrhizae
interactions across gradients of soil fertility. We demonstrate two mechanisms by which increased soil fertility may cause
interactions to change from mutualistic to parasitic: as relative benefits to the plant decrease with increasing soil fertility,
the interaction between the fungus and its host turns parasitic; with two fungal species—one a mutualist and the other a
cheater—increasing soil fertility can favor the cheater if mutualists have faster growth rates than cheaters.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Mutualistic interactions, although ubiquitous in na-
ture, are not well understood theoretically (Boucher,
1985; Herre et al., 1999; Hoeksema and Bruna,
2000). A variety of theoretical approaches have
been developed to model mutualisms (reviewed in
Hoeksema and Bruna, 2000), including the iterated
prisoner’s dilemma and other game theoretic ap-
proaches, biological market models, and models for
the evolution of virulence. There have been a num-
ber of recent articles that use different approaches
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to modeling mutualisms, mutualist/exploiter coex-
istence (Johnstone and Bshary, 2002; Morris et al.,
2003; Wilson et al., 2003), and conditions favoring
mutualism (Hoeksema and Schwartz, 2002; Nuismer
et al., 2003). Relatively lacking, however, have been
Lotka–Volterra type models, which are frequently used
by ecologists to study competition and predator–prey
interactions. This may stem from the impression that
such models when applied to mutualistic interactions
are not generally stable (May (1974): “mutualism
between species tends to have a destabilizing ef-
fect on the community dynamics”). Indeed, simple
Lotka–Volterra mutualism models often predict that
both species increase to populations of infinite size.

However, incorporation of nonlinearities (e.g. den-
sity dependence) into Lotka–Volterra mutualism mod-
els for either the host or the symbiont often results in
stable equilibria (Whittaker, 1975; Vandermeer and
Boucher, 1978; May, 1981; Soberon and Martinez del
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Rio, 1981; Wells, 1983; Vandermeer and Goldberg,
2003, p. 238;Zhang, 2003). Similarly, including a
spatial component stabilizes the interaction (Tainaka
et al., 2003). These modified models have been ap-
plied to a variety of ecological interactions, such as
plant–pollinator interactions (Soberon and Martinez
del Rio, 1981; Wells, 1983; Holland et al., 2002)
and legume–rhizobium interactions (Vandermeer and
Boucher, 1978; Simms and Taylor, 2002; West et al.,
2002).

Researchers have recognized that symbiotic inter-
actions may shift between mutualism and parasitism,
depending on endogenous or exogenous factors
(Thompson, 1988; Bronstein, 1994; Herre et al.,
1999; Hernandez, 1998; Johnson et al., 2003). How-
ever, traditional mutualism models do not include
the possibility of negative effects between species,
nor do traditional predator–prey models include the
possibility of positive effects of the predator species
on the prey species. Thus, neither type of model can
explore shifts between mutualism and parasitism. We
modify a Lotka–Volterra model to include both pos-
itive and negative effects between species and show
how it can be applied to mutualism–parasitism shifts.
Specifically, we address the questions (1) what factors
determine whether a species behaves as a mutualist or
a parasite? and (2) what factors control the outcome
of competition between a cheater and a mutualist?
The framework of the Lotka–Volterra model has the
benefits of being widely familiar to ecologists and
of explicitly quantifying population densities (unlike
many game theoretical or biological market models).

2. The model

We adopt the view that mutualistic interactions are
essentially exploitative where one species exploits
the other to gain a benefit (Herre et al., 1999), and
thus both costs and benefits must be taken into ac-
count to successfully model mutualisms (Holland
et al., 2002). The model we propose is based on the
classical predator–prey/host–parasite Lotka–Volterra
model with the additional possibility of the parasite
benefiting the host. It is this mechanism that might
turn the interaction mutualistic. We retain the notation
of the host–parasite model, but refer to the parasite
as the symbiont because it may operate as either a

mutualist or a parasite. We make the following model
assumptions: (1) the host dynamics in the absence of
the symbiont follow logistic growth; (2) the symbiont
has both a positive and a negative effect on the host:
the presence of the symbiont benefits the host by in-
creasing the host’s carrying capacity, but also results
in an increased death rate of the host due to exploita-
tion; (3) self-interference of the symbiont increases
the symbiont’s death rate. These assumptions result
in the following model equations:

dH

dt
= rH

(
1 − H

K + γP

)
− aHP

dP

dt
= bHP − dP(1 + eP)

(1)

where H denotes the density of the host andP the
density of the symbiont. All parameters in the model
are assumed to be positive, except forγ, which is as-
sumed to be nonnegative. The parameterK is the car-
rying capacity; the parameterr is the intrinsic rate of
growth of the host; the parametera represents the ex-
ploitation of the host by the symbiont, which leads to a
reduction in the growth rate of the host. The parameter
b is the growth rate of the symbiont. The parameters
d ande describe the symbiont’s density independent
and dependent death rates, respectively. The term�P
incorporates the gain to the host from the interaction
with the symbiont. Whenγ = 0, the model reduces
to a modified Lotka–Volterra predator–prey model
that includes density dependence for the host and the
symbiont (i.e. the terms in the parentheses). Incor-
porating density dependence for the host population
is sufficient to stabilize the coexistence equilibrium
(if it exists).

We chose this particular model, which includes
symbiont density dependence, because it can be
extended to include competition between multi-
ple symbionts in a model framework analogous to
Lotka–Volterra competition models. We analyze the
two species model first before discussing competition
between multiple symbionts. We assumeK > d/b. In
biological terms, this means that the host carrying ca-
pacity in absence of the symbiont can support positive
symbiont growth so that a symbiont can invade an
equilibrial host population. This seems biologically
realistic and simplifies the analysis.

There are two distinct methods to characterize an
equilibrium as either mutualistic or parasitic. These
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have empirical and analytical analogues (Bender
et al., 1984). The first method can be described as a
long-term equilibrium approach: The host is grown in
both the presence and the absence of the symbiont un-
til equilibria are reached (i.e. a control and a symbiont
treatment). The interaction is characterized as mutu-
alistic if the host biomass is larger in the presence of
the symbiont than when the symbiont is absent and
parasitic otherwise. The direct mathematical analogue
is to compare the host monoculture equilibrium in
which the symbiont is absent to the host equilibrium
density of the nontrivial equilibrium in which both
host and symbiont are present. The second method
can be described as a pulse experiment approach
(Bender et al., 1984): host and symbiont are grown
together until they reach equilibrium. If increasing
symbiont density (simply by adding symbionts) in-
creases the growth rate of the host, the interaction is
characterized as mutualistic, otherwise as parasitic.
The two types of experiments (and likewise their
mathematical counterparts) do not necessarily yield
the same characterization (Bender et al., 1984).

The mathematical analogue of the pulse experiment
is based on standard graphical phase plane analysis. It
utilizes the sign structure of the Jacobian matrix, de-
noted byJ, evaluated at the equilibrium (May, 1974).

Host density (H)
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Fig. 1. If K > d/b, the two isoclines intersect in the first quadrant and a (unique) nontrivial equilibrium exists. The three symbiont isoclines
illustrate the different outcomes of the interactions.

We are particularly interested in nontrivial equilibria,
that is, equilibria in which the densities of both host
and symbiont are positive. A nontrivial equilibrium oc-
curs when the two zero isoclines cross in the first quad-
rant (Fig. 1). Under the assumptionK > d/b, there
exists exactly one such point. To find the signs in the
Jacobian matrix, we determine how dH/dtand dP/dt
change as eitherH or P increases. For instance, to find
the first entry in the Jacobian matrix (∂(dH/dt)/∂H),
we move along a horizontal line through the equilib-
rium point in the direction of increasing host density.
Since we move from a region where dH/dtis positive
to a region where dH/dtis negative, dH/dt decreases
asH increases and thus∂(dH/dt)/∂H < 0. The other
entries can be found similarly.

Whether the interaction is parasitic or mutualistic
(sensuMay, 1974) depends upon whether the joint
equilibrium occurs above or below the vertex. When
the symbiont isocline crosses the host isocline below
the vertex (Fig. 1: isocline 1), the Jacobian matrix is of

the form

[ − +
+ −

]
and the interaction is mutualistic

in the sense that an increase in symbiont density has a
positive effect on the growth rate of the host at equi-
librium (the entry∂(dH/dt)/∂P is positive). When the
symbiont isocline crosses the host isocline above the
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vertex (Fig. 1: isoclines 2 and 3), the Jacobian matrix

is of the form

[ − −
+ −

]
and the interaction is para-

sitic in the sense that an increase in symbiont density
has a negative effect on the growth rate of the host
at equilibrium (the entry∂(dH/dt)/∂P is negative). If
the vertex is below thex-axis (in the fourth quadrant),
then it is impossible for the joint equilibrium to be
below the vertex, and the interaction is always para-
sitic. This occurs when the second coordinate of the
vertex is negative. The coordinates of the vertex are
given by (K/2 + γr/4a + aK2/4rγ, r/2a − K/2γ),
so the interaction is always parasitic whenK > γ

r/a. Thus, in this model as in nature, interactions be-
tween two species can range from mutualistic to para-
sitic (Thompson, 1988; Bronstein, 1994; Herre et al.,
1999).

Oscillations, which are common in host parasite in-
teractions, are not a feature of the mutualistic interac-
tions in this two-species model. When the interaction
is characterized as mutualistic based on the Jacobian
matrix, the equilibrium is a nodal sink (eigenvalues
are real and negative; the equilibrium is approached
via exponential decay). As the interaction turns more
parasitic, a qualitative shift occurs from a nodal sink
to a spiral sink (eigenvalues are complex with negative
real parts; the equilibrium is approached via damped
oscillations). To determine where eigenvalues are real,
it is sufficient that Tr(J)2 − 4 det(J) >0, where Tr(J)
is the trace and det(J) the determinant of the Jacobian

matrix. If J =
[

a11 a12
a21 a22

]
, then Tr(J)2 − 4 det(J)=

(a11 − a22)
2 + 4a12a21 > 0 if both a12 and a21 are

positive, as is the case if the interaction is mutualistic.
Thus, all mutualistic interactions have a nodal sink.
Parasitic interactions may have either a nodal sink or
a spiral sink: as the interaction becomes more para-
sitic, the equilibrium point shifts from a nodal sink to
a spiral sink.

Note that isocline 2 inFig. 1 results in an equi-
librium that is characterized as being parasitic based
on the Jacobian matrix (at equilibrium, increases
in symbiont abundance decrease host growth), even
though the host equilibrium density is higher in the
presence of the symbiont than when the symbiont is
absent and would thus be characterized as mutualistic
based on the long-term equilibrium approach. Iso-
cline 3 (Fig. 1) would be characterized as parasitic by

both the Jacobian matrix and equilibrium abundances
approaches. The fact that the characterization of equi-
libria as mutualistic or parasitic based on the Jacobian
matrix does not always agree with the characterization
based on equilibrium densities is perhaps not sur-
prising, as the Jacobian matrix analysis refers to the
transient dynamics following a small perturbation and
is thus a local analysis (seeNeubert et al., 2002, for
instance, for a discussion of this approach), whereas
the comparison of equilibria is a global feature, not re-
flected by the Jacobian matrix. Both characterizations,
however, are important since both have experimental
analogues. We subsequently explore both the use of
the Jacobian matrix and the criterion of increased host
abundance in the presence of the symbiont to deter-
mine whether interactions are mutualistic or parasitic.
To avoid redundancy, we defer further discussion
of the factors controlling the mutualism parasitism
shift to the plant–mycorrhizae application discussed
below. We note that our analysis relies on the shape
of the isoclines and not on their precise analytical
form. Qualitatively similar results thus occur for other
models with qualitatively similar zero isoclines.

In nature, most mutualisms involve multiple
species on both sides of the interaction (Horvitz
and Schemske, 1990; Thompson and Pellmyr, 1992;
Pellmyr and Thompson, 1996), raising the question
of how species that share a mutualist coexist. In
addition, many mutualist species may share a host
with parasitic species, which also begs the question
of coexistence (Denison, 2000; Morris et al., 2003).
To address this latter question, we include a second
symbiont whose density is denoted byQ. We assume
that the second symbiont is a cheater, that is, it does
not confer any benefits to the plants. Because the
symbiontP has the potential to act as a mutualist, we
will refer to speciesP andQ as mutualist and cheater,
respectively. The interaction between the two species
is modeled analogously to classical competition,
where

dH

dt
= rH

(
1 − H

K + γP

)
− a1PH − a2QH

dP

dt
= b1HP − d1P(1 + e1P + c1Q)

dQ

dt
= b2HQ − d2Q(1 + e2Q + c2P)

(2)
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All parameters, except forc1, c2, andγ are positive.
The parametersc1, c2, andγ are nonnegative. The in-
terpretation of the parameters in these equations is the
same as in the single symbiont case, with the addi-
tion of interspecific competition terms to the symbiont
equations. The strength of interspecific competition is
measured by the parametersc1 andc2. As before, we
assumeK > (d1/b1), (d2/b2). Furthermore, we as-
sume(b1/d1) > (b2/d2).

The three-species system has multiple equilibria.
There is the trivial equilibrium (0, 0, 0), which is
always unstable. Furthermore, there are twobound-
ary equilibria where one or the other symbiont is
absent (as in our the two-species model), denoted
by (H̄ P̄ , P̄, 0) and (H̄Q̄, 0, Q̄), respectively, where
H̄ P̄ > 0 with P̄ = (1/e1)((b1/d1)H̄

P̄ − 1) > 0, and
H̄Q̄ > 0 with Q̄ = (1/e2)((b2/d2)H̄

Q̄ − 1) > 0. The
behavior of this three-species system can be conve-
niently summarized in terms of the competition coef-
ficientsc1 andc2. Details are provided inAppendix A.
We define

λP
1 = 1

e1

(
b1

d1
H̄ P̄ − 1

)
and

λP
2 = 1

e2

(
b2

d2
H̄ P̄ − 1

)

c1

c2

Q

Q
e

2

1
1

P

P
e

1

2
2

P can invade
Q can invade

P can invade
Q cannot invade

P cannot invade
Q cannot invade

P cannot invade
Q can invade

Fig. 2. The c1–c2 plane is divided into four regions based on whether the mutualist or the cheater can invade.

and

λ
Q
1 = 1

e1

(
b1

d1
H̄Q̄ − 1

)
and

λ
Q
2 = 1

e2

(
b2

d2
H̄Q̄ − 1

)
.

λ gives the carrying capacity of a symbiont for a fixed
host density (fixed at either H̄Q̄ or H̄ P̄ ). The super-
scripts indicate the value used for host density, and the
subscripts indicate whether λ is the carrying capacity
of symbiont 1 (the mutualist) or 2 (the cheater). P can
invade the (H̄Q̄, 0, Q̄) equilibrium if and only if

c1 < e1
λ

Q
1

λ
Q
2

and Q can invade the (H̄ P̄ , P̄, 0) equilibrium if and
only if

c2 < e2
λP

2

λP
1

This invasibility criterion tells us something about the
stability of the boundary equilibria (H̄ P̄ , P̄, 0) and
(H̄Q̄, 0, Q̄) (Fig. 2). A further analysis is needed to
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determine the existence and stability of nontrivial
equilibria (H∗, P∗, Q∗) with H∗, P∗, Q∗ > 0.

We show in Appendix A that the equilibria
H̄ P̄ , P̄, H̄Q̄ and Q̄ are increasing functions of the
carrying capacity K, that these equilibria have finite
limits as K → ∞, and that if (b1/d1) > (b2/d2),
then e1(λ

Q
1 /λ

Q
2 ) is a decreasing function of K and

e2(λ
P
2 /λP

1 ) is an increasing function of K.
Finding nontrivial equilibria and analyzing stabil-

ity is algebraically quite involved. Based on geomet-
ric considerations, however, we can say the following
(see Appendix A): there exists at most one nontriv-
ial equilibrium if c1 < e2(b1/d1)(d2/b2) and c2 <

e1(b2/d2)(d1/b1); if c1 < e2(b1/d1)(d2/b2) and c2 >

e1(b2/d2)(d1/b1), there exists no nontrivial equilib-
rium; if c1 > e2(b1/d1)(d2/b2), there may exist up
to two nontrivial equilibria. Below, where we discuss
shifts from mutualism to parasitism, we will provide
numerical examples that illustrate the behavior of this
three-species model.

3. An application: plant–mycorrhizae
interactions

This model can be applied to plant–mycorrhizae
interactions, where the plant represents the host and
the fungus represents the parasite, reflecting our view
that plant–mycorrhizae interactions are in essence ex-
ploitative. In this context, the most appropriate way to
think about the population densities in the equations
are in terms of biomass rather than in terms of numbers
of individuals. The number of individuals in a mycor-
rhizae population is not empirically measurable. Also,
the population sizes of these species may change at
dramatically different rates, but because of the modu-
lar growth forms of both species, biomass responses
may operate on a much more similar time scale.

The interaction between the fungus and its host
plant consists of nutrient transfer: the plant provides
the fungus with carbon compounds; the fungus de-
livers nutrients, such as phosphorus, to the plant. A
plant may benefit from an infection with mycorrhizal
fungi, particularly in soils with low availability of
phosphorus. Carbon transfer from plant to fungus may
decrease plant fitness, whereas nutrient transfer from
fungus to plant may increase plant fitness (Smith and
Read, 1997). However, the net benefit a fungus confers

to a plant declines with soil fertility, and may be nega-
tive in very fertile soils (Bowen, 1980; Johnson, 1993;
Johnson et al., 1997; Saikkonen et al., 1998;
Cairney and Meharg, 1999; Egerton-Warburton and
Allen, 2000). Based on our model, we demonstrate
two mechanisms by which increased soil fertility
may cause interactions to change from mutualistic
to parasitic: as relative benefits to the plant decrease
with increasing soil fertility, the interaction between
the fungus and its host turns parasitic; with two fun-
gal species, a mutualist and a cheater, increasing soil
fertility can favor the cheater.

Using the single host/single symbiont model, we
demonstrate that an increase in soil fertility can turn
a mutualistic relationship into a parasitic relation-
ship. The change from mutualism to parasitism occurs
because, as the limiting resource becomes more abun-
dant, the relative benefit of the mycorrhizae supplying
that resource is decreased. The effect of soil fertility
can be studied by changing the carrying capacity K,
which increases with soil fertility. As K increases
while all other parameters are kept fixed, the vertex
of the zero isocline of the host moves to the right and
down (the dotted line in panel 1 in Fig. 3 indicates
the location of the vertex as a function of K) implying
that when K increases, a mutualistic relationship can
change into a parasitic one. This can also be seen an-
alytically from the coordinates of the vertex given by
(K/2 + γr/4a + aK2/4rγ , r/2a − K/2γ). An increase
in K increases the first and decreases the second co-
ordinate, thus changing the relative position of the
equilibrium and the vertex of the host isocline. Using
the pulse criterion, if the symbiont isocline (dashed
lines in Fig. 3) intersects the host isocline below the
vertex the interaction is mutualistic; if the intersection
occurs below the vertex it is parasitic. The equi-
librial abundance criterion also shows a shift from
mutualism to parasitism with increasing host carrying
capacity, such that for high values of host carrying
capacity, the presence of the symbiont decreases host
abundance. Although both criteria detect a switch
from mutualism to parasitism, the shift from mutual-
ism to parasitism based on the pulse criterion always
occurs at a lower host carrying capacity than does the
shift based on the equilibrial abundance criterion.

The amount of benefit the symbiont provides to
the host (γ) also influences whether an interaction is
mutualistic or parasitic. Using the pulse criterion, the
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Fig. 3. Increased host carrying capacity (K) can change an interaction from mutualistic to parasitic. Increases in symbiont benefit (γ)
can change an interaction from mutualistic to parasitic, and depending on the criterion used, back to parasitic. The fungus isocline is
independent of K and γ , and intercepts H at d/b. The plant isocline is a sideways parabola. The location of the vertex is dependent on K
and γ , with coordinates (K/2 + γr/4a + aK2/4rγ , r/2a − K/2γ).

qualitative behavior of the equilibrium as a function of
γ depends on the slope of the symbiont isocline. If the
slope is too steep, the interaction is always parasitic.
If not, the interaction is mutualistic for intermediate
values of γ but parasitic for small or large values of γ

(see panel 2 in Fig. 3). That the interaction is parasitic
for small values of γ is not surprising since in this
case the interaction reduces to an exploiter–victim re-
lationship where the victim (that is the host) does not
benefit from the presence of the exploiter (that is the

symbiont). As γ increases, the net benefit to the host
can become positive. Surprisingly, a further increase
in the benefit to the host can turn the interaction para-
sitic again. Because the benefit of the symbiont in our
model occurs via increases in host carrying capacity,
the host, as γ tends to infinity, becomes unlimited
by carrying capacity, and is limited only by the neg-
ative effects of the symbiont. Thus, the equilibrium
values approach those of a system where the host dy-
namics are described by the classical predator–prey
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model (dH/dt = rH − aHP). The above discussion
is based on pulse analyses. Based on the equilibrial
abundance criterion, increases in γ always make the
interaction more mutualistic. Note that the interaction
depicted with γ = 11 (panel 2, Fig. 3) would be
characterized as parasitic based on the pulse criterion,
but mutualistic based on the equilibrial abundance
criterion.

In nature, a single plant is often infected by more
than one fungus (e.g. Helgason et al., 1998; Horton
and Bruns, 1998; Allen et al., 1995). These fungi may
range from mutualistic to parasitic, and may com-
pete with each other (Wu et al., 1999). Using the
single-host/two-symbiont model, we ask what hap-
pens when two fungi compete for the same host, and
what controls the outcome of competition? Specifi-
cally, does an increase in soil fertility affect the out-
come of competition? We use K as a measure for soil
fertility. We consider the case of (b1/d1) > (b2/d2),
i.e., the mutualist grows faster than the cheater. This
could occur, for instance, if the host rewards the mu-
tualist more than the cheater by regulating the amount
of carbon it transfers to the fungus. With these as-
sumptions and fixed values of c1 and c2, the outcome
of competition shifts predictably with soil fertility.
Specifically, we will demonstrate that it is possible to
choose parameter values so that for small values of K
only the mutualist and the host can coexist, but as K
increases, the cheater becomes more and more favored

c1

c 2

Table 1 Table 2 

2=K
3=K
20=K

Fig. 4. For each of the three values of K, the lines e1(λ
Q
1 /λ

Q
2 ) (vertical lines) and e2(λ

P
2 /λP

1 ) (horizontal lines) are drawn that partition
the c1–c2 plane according to the behavior of the boundary equilibria. The locations of the dots indicate the choices of parameters for the
simulations in Tables 1 and 2, respectively.

and will eventually be able to invade. The cheater will
then either be able to coexist with the mutualist or even
outcompete the mutualist, depending on the choice of
parameters.

We use stability of boundary equilibria (i.e. whether
mutualist or cheater can invade in the presence of the
other) and the geometric shape of the isoclines to de-
termine whether the mutualist and cheater can coexist
or whether one is outcompeted by the other. Fig. 4 il-
lustrates how changes in K affect the stability of the
boundary equilibria for fixed values of c1 and c2. It is
thus possible to choose parameter values so that the
cheater cannot invade the host-mutualist equilibrium
for small values of K, but as K increases, either both
the cheater and the mutualist will be able to invade
or the cheater will be able to invade but the mutualist
will not. This indicates that a switch from mutualism
to parasitism can occur in this system as soil fertility
increases.

We illustrate this switch using two examples with
specific parameters. (Mathematical details can be
found in Appendix A.) In the first example (see
Table 1, Fig. 4, and Appendix A), the parameters
c1 and c2 are chosen so that for small values of K,
the mutualist can invade but the cheater cannot. As
K increases, both mutualist and cheater can invade.
Thus increasing carrying capacity (e.g. through fer-
tilization) can cause the community to shift from
mutualists only to mutualists and parasites.
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Table 1
The equilibria (H, P, Q) are listed together with their stability

H P Q Stability

K = 2, P wins
2.3939 6.1817 0 Locally stable
1.333 0 1.6667 Unstable

K = 3, coexistence
2.3987 6.1961 0 Unstable
1.6364 0 2.2727 Unstable
2.3987 6.1918 0.030 Locally stable

K = 20, coexistence
2.4503 6.3510 0 Unstable
2.6667 0 4.3333 Unstable
2.4508 6.2652 0.0623 Locally stable

Parameter values: γ = 5, r = 2, a1 = 0.3, a2 = 0.4, b1 =
3, b2 = 2, c1 = 1.400, c2 = 0.6128, d1 = 1, d2 = 1, e1 =
1, e2 = 1.

In the second example (see Table 2, Fig. 4, and
Appendix A), the parameters c1 and c2 are chosen so
that for small values of K, the mutualist can invade
but the cheater cannot; for intermediate values of K,
both can invade; for large values of K, the cheater can
invade but the mutualist cannot. Thus, both examples
illustrate a shift in the symbiont community from mu-
tualist to cheater.

In addition, this set of parameter values results in
multiple, locally stable equilibria at low values of K.
Although the “mutualist-only” boundary equilibrium

Table 2
The equilibria (H, P, Q) are listed together with their stability

H P Q Stability

K = 2, coexistence, Q cannot invade
2.3939 6.1817 0 Locally stable
1.333 0 1.6667 Unstable
2.2094 1.1525 2.7125 Locally stable
2.3949 6.1585 0.0159 Unstable

K = 3 coexistence
2.3987 6.1961 0 Unstable
1.6364 0 2.2727 Unstable
2.1995 0.887 2.8556 Locally stable

K = 20, Q wins
2.4503 6.3510 0 Unstable
2.6667 0 4.3333 Locally stable

Parameter values: γ = 5, r = 2, a1 = 0.3, a2 = 0.4, b1 =
3, b2 = 2, c1 = 1.650, c2 = 0.6128, d1 = 1, d2 = 1, e1 =
1, e2 = 1.

is locally stable, there is an additional locally sta-
ble equilibrium point in which the mutualist and the
cheater coexist. The existence of these two locally sta-
ble equilibria at low K means that although the cheater
cannot successfully invade when present at low abun-
dance, once present at sufficiently high abundance the
mutualist and the cheater can coexist. This occurs
when a highly beneficial mutualist, in the absence of
the cheater, causes a high host and mutualist densities,
and a high mutualist density competitively inhibits the
growth of the cheater. When cheater density is higher,
the density of mutualists is reduced, due both to di-
rect competitive effects, and to the indirect effects of
reduced host abundance. The cheater can grow suc-
cessfully once mutualist density is lowered and com-
petitive inhibition is reduced.

We see that parameter values can be chosen so
that for low nutrient soils, the mutualist always ex-
cludes the cheater, but for high nutrient soils the
cheater may be able to coexist with or exclude the
mutualist. This occurs because at low host densities
fungal interactions are relatively more dependent on
growth rates (and we have assumed that the mutu-
alists have higher growth rates), while at high host
densities fungal interactions are determined more by
their competition coefficients. Thus, the advantage
in growth rate experienced by the mutualist ensures
competitive dominance at low host densities, but not
at high host densities. This may explain the decline
of beneficial fungi in heavily fertilized systems, such
as agricultural fields (Johnson, 1993; Johnson et al.,
1997; Helgason et al., 1998).

It should be pointed out that these predictions
change if there is a negative correlation between γ

and b/d, and thus b1/d1 < b2/d2. This would occur
if, for example, the mutualist incurs a net cost when
transferring nutrients to its host. In this case, a simi-
lar analysis as above would conclude that the cheater
excludes the mutualist in the case of low soil fertility,
and that increased soil fertility favors the mutual-
ist. The empirical relationship between mycorrhizal
growth rates and host benefit is still an open ques-
tion (Douglas, 1995), so it would be speculative to
propose a priori either scenario as more biologically
realistic. However, if our model is to agree with the
empirically observed shift from mutualism to para-
sitism across increasing soil fertility, mutualists must
have a higher relative growth rate than cheaters.
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4. Discussion

Nonlinear mutualism models that predict a stable
equilibrium of host and symbiont have been presented
before (Whittaker, 1975; Vandermeer and Boucher,
1978; May, 1981; Soberon and Martinez del Rio, 1981;
Wells, 1983). Uniquely, our model is based on a mod-
ified predator–prey model, which includes both the
cost of exploitation, and the possibility of a benefit
conferred to the victim by the exploiter. This allows
the model to exhibit both parasitic and mutualistic
behavior.

Few models address the factors that control shifts
from mutualism to parasitism. Hochberg et al. (2000)
present a model that shows striking agreement with
our prediction of a shift in the outcome of competi-
tion with increased host abundance. Their model of
competition between symbionts showed that avirulent
(more beneficial) symbionts were favored at low host
productivity, and virulent (less beneficial or parasitic)
symbionts were favored at high host productivity. This
occurs in their model when the avirulent symbiont
experiences higher growth (via vertical transmission),
while the virulent symbiont is a better competitor
(higher horizontal transmission). The similarity be-
tween our findings and those of Hochberg et al. (2000)
are particularly interesting because Hochberg et al.’s
model contains some fundamental differences from
our model. For example, in their model symbionts af-
fect growth rates rather than carrying capacity, which
is not an explicit parameter, and it is assumed that
all hosts are infected with only one symbiont. The
agreement of these different models supports the gen-
erality of our results. Hernandez (1998) presents a
general model, which allows for shifts in interaction
types because competition coefficients are allowed
to vary (and change sign) as nonlinear functions of
population density. The generality of this model pre-
cludes further comparison. Zhang (2003) modifies
the Lotka–Volterra competition model by introducing
density dependent interactions: mutualism at low den-
sities and competition at high densities, which demon-
strates that mutualism can facilitate coexistence. This
model is intended to apply to interactions between
species at the same trophic level, and does not likely
apply to interactions between a host and its symbiont,
because hosts generally do not have a negative effect
on symbionts at high host density. Similarly, Tainaka

et al. (2003) modified the standard Lotka–Volterra
model of interspecific competition. Their focus is to
investigate the role of a spatial component on stability
of equilibria, which precludes further comparisons
between our and their approaches. Holland et al.
(2002) developed a model using differential equations
in which the costs and benefits vary over population
densities of interacting symbionts, and applied it to a
plant–pollinator mutualism. They note the importance
of the type of assumed functional responses for model
dynamics. Our model includes a functional response
not considered in their paper, namely the effect of
one symbiont on the carrying capacity of the other.
Empirical characterization of the shape of such func-
tional responses will be an important area of future
research.

Fisher and Freedman (1991) consider a mutualism
model where the mutualistic interaction is modeled
indirectly through “environmental protection,” such
that a protector species positively affects the carry-
ing capacity of a protected species once both species
exceed a threshold density. Their model, just as ours,
includes a mechanism that allows for an increase in
carrying capacity of the host species, and shows that
this increase in carrying capacity facilitates coexis-
tence between the host and the symbiont. Their paper,
however, does not address the shift from mutualism to
parasitism observed here nor the interactions between
a mutualist and a cheater.

Morris et al. (2003) explored the conditions under
which a mutualist and cheater (exploiter) can coexist
in a plant–pollinator symbiosis, also using differential
equations in which the costs and benefits vary over
population densities of interacting symbionts. They
found requirements for coexistence similar to those
in Lotka–Volterra competition models, such that co-
existence is favored when intraspecific competition is
greater than interspecific competition. Although their
model is for obligate and ours for facultative mutu-
alisms, their conclusions with respect to the role of
intra- versus interspecific competition are similar to
ours.

Wilson et al. (2003) investigate obligate mutu-
alisms that allows for inclusion of an exploiter, in
contrast to the facultative mutualism explored here.
Obligate mutualism leads to bistability in the case of
a single host and single symbiont; this is not seen our
model where the host always has a positive density in
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the absence of the other symbionts. The Wilson et al.
model is in discrete time and follows the approach
of the Nicholson–Bailey model; the inclusion of an
exploiter species leads to complex dynamics that are
not exhibited by our model. Their focus is on the role
of a spatial component that stabilizes the dynamics,
an aspect we did not address.

While much research has addressed the question of
how mutualisms may have evolved (Hoeksema and
Bruna, 2000), fewer have addressed the related ques-
tion of how mutualists and cheater can coexist in eco-
logical time (Morris et al., 2003; Wilson et al., 2003).
Such coexistence is likely a prerequisite for the evolu-
tion of a mutualist in the presence of a cheater, making
models, such as ours (for facultative mutualisms) and
the ones presented in Morris et al. (2003) and Wilson
et al. (2003) (for obligate mutualisms), relevant for
exploring factors influencing the evolution of mutual-
ism. For example, our predictions about interspecific
competition may be reinterpreted in an evolutionary
context to suggest that mutualistic genotypes are rel-
atively favored at low host productivity and cheater
genotypes are relatively favored at high host produc-
tivity.

Our model has the potential to address other ques-
tions. For example, in our analysis, we assumed that
the host has no control over how much it should re-
turn to the symbiont. Relaxing this assumption could
allow the interaction to remain mutualistic even as soil
fertility increases.

When applied to plant–mycorrhizae interactions,
the model provides two mechanisms for the em-
pirically observed change from a mutualistic to a
parasitic interaction as soil fertility increases. First,
as benefits to the plant become less important with
increasing soil fertility, the interaction between the
fungus and its host turns parasitic without changing
either the host or the fungus characteristics. Second,
competitive interactions between two strains of fungi
can show a shift in favor of a cheater as soil fertil-
ity increases. This occurs when the mutualist has a
higher growth rate, but the cheater is a better com-
petitor. Contrary to the impression commonly given
in ecology textbooks (e.g. Stiling, 1999), simple
adaptations of the Lotka–Volterra model to mutual-
ism can facilitate coexistence, yield stable equilibria,
and offer insight into the ecological dynamics of
mutualists.
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Appendix A.

A.1. Analysis of the host–mutualist–cheater system

The model is given by the following set of differ-
ential equations

dH

dt
= rH

(
1 − H

K + γP

)
− a1PH − a2QH

dP

dt
= b1HP − d1P(1 + e1P + c1Q)

dQ

dt
= b2HQ − d2Q(1 + e2Q + c2P)

(A.1)

The parameters r, K, a1, a2, b1, d1, e1, b2, d2 and e2
are positive, and c1, c2 and γ are nonnegative. We as-
sume throughout that K > (d1/b1), (d2/b2). When
either P or Q are equal to 0, the system reduces to
the two species host-symbiont model. There are thus
at least the following three equilibria: the trivial equi-
librium (0, 0, 0), the equilibrium where the mutualist
is absent, (H̄Q̄, 0, Q̄), and the equilibrium where the
cheater is absent, (H̄ P̄ , P̄, 0). We call the latter two
equilibria boundary equilibria. There might be addi-
tional equilibria with H∗ > 0, P∗ > 0, and Q∗ > 0,
called nontrivial equilibria.

A.2. Invasibility criteria

To understand the equilibrium behavior, we deter-
mine conditions when P (respectively, Q) can invade
the boundary equilibrium when Q (respectively, P) is
present. If K > (d1/b1) and Q = 0, then there ex-
ists a unique boundary equilibrium (H̄ P̄ , P̄, 0) where
H̄ P̄ > 0 with P̄ = (1/e1)((b1/d1)H̄

P̄ − 1) > 0. If we
define

λP
1 = 1

e1

(
b1

d1
H̄ P̄ − 1

)
and

λP
2 = 1

e2

(
b2

d2
H̄ P̄ − 1

)
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then Q can invade the (H̄ P̄ , P̄, 0) equilibrium if

1

Q

dQ

dt (H̄ P̄ ,P̄,0)
= b2H̄

P̄ − d2(1 + c2P̄) > 0

This yields the condition

c2 < e2
λP

2

λP
1

If K > (d2/b2) and P = 0, then there exists a unique
boundary equilibrium (H̄Q̄, 0, Q̄) where H̄Q̄ > 0
with Q̄ = (1/e2)((b2/d2)H̄

Q̄ − 1) > 0. If we define

λ
Q
1 = 1

e1

(
b1

d1
H̄Q̄ − 1

)
and

λ
Q
2 = 1

e2

(
b2

d2
H̄Q̄ − 1

)

then a similar invasibility analysis as above shows that
P can invade the (H̄Q̄, 0, Q̄) equilibrium if and only if

c1 < e1
λ

Q
1

λ
Q
2

A.3. Dependence of λP
1 and λ

Q
2 on K

The quantities λP
1 and λ

Q
2 are the respective sym-

biont equilibria of the two-species model. The non-
trivial equilibrium (H∗, P∗) of the two-species model
is the point of intersection of the host isocline and the
symbiont isocline in the positive quadrant of the H–P
plane (see panel 1 in Fig. 3). It follows from the al-
gebraic form of the host isocline that as K increases,
the host isocline moves to the right (see panel 1 in
Fig. 3). Since the symbiont isocline in the H–P plane
is a straight line with positive slope, it follows imme-
diately that both H∗ and P∗ are increasing functions
of K. This argument holds for all γ ≥ 0 and thus holds
for both the H–P and the H–Q system. This shows that
both H̄ P̄ , P̄, H̄Q̄ and Q̄ are increasing functions of K.

A.4. Dependence of e2λ
P
2 /λP

1 and e1λ
Q
1 /λ

Q
2 on K

Define

f1(x) = e1
(b2/d2)x − 1

(b1/d1)x − 1
and

f2(x) = e2
(b1/d1)x − 1

(b2/d2)x − 1

Then f1(H̄
P̄ ) = e2λ

P
2 /λP

1 and f2(H̄
Q̄) = e1λ

Q
1 /λ

Q
2 .

Since we assumed (b1/d1) > (b2/d2), f2(x) is a de-
creasing function for x > (d2/b2) and f1(x) is an in-
creasing function for x > (d1/b1). We find that

lim
x→∞ f1(x) = e1

d1

b1

b2

d2
and lim

x→∞ f2(x) = e2
d2

b2

b1

d1

As K → ∞, H̄ P̄ → (d1/b1)(1 + e1(r/a1)), P̄ →
(r/a1), H̄Q̄ → (d2/b2)(1 + e2(r/a2)), and Q̄ →
(r/a2). Furthermore, we find that

lim
K→∞

e2
λP

2

λP
1

= e1
b2

d2

d1

b1
− a1

r

(
1 − b2

d2

d1

b1

)
< e1

b2

d2

d1

b1

and

lim
K→∞

e1
λ

Q
1

λ
Q
2

= e2
b1

d1

d2

b2
+ a2

r

(
1 − b1

d1

d2

b2

)
> e2

b1

d1

d2

b2

This is summarized in Fig. 5.

A.5. Nontrivial equilibria and stability

The zero isoclines are obtained by setting the time
derivatives in Eq. (A.1) equal to 0. We find

dH

dt
= 0 : H = (K + γP)

(
1 − a1

r
P − a2

r
Q

)

dP

dt
= 0 : H = d1

b1
(1 + e1P + c1Q)

dQ

dt
= 0 : H = d2

b2
(1 + e2Q + c2P)

The zero isoclines satisfying (dP/dt) = 0 and
(dQ/dt) = 0 are planes in the P–Q–H space. If the
two planes intersect, their intersection is a line that
can be parameterized by H. We find

P = e2((b1/d1)H − 1) − c1((b2/d2)H − 1)

e1e2 − c1c2
and

Q = e1((b2/d2)H − 1) − c2((b1/d1)H − 1)

e1e2 − c1c2

The projection of this line onto the P–Q plane is then
given by the equation

Q = (d1/b1)−(d2/b2)

e2(d2/b2)−c1(d1/b1)
+ e1(d1/b1)−c2(d2/b2)

e2(d2/b2)−c1(d1/b1)
P
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Fig. 5. As K increases, the solid lines move in the direction of the arrows, approaching the broken lines in the limit K → ∞. The dashed
lines are the limits of f1(x) and f2(x) as x → ∞.

Fig. 6 shows the qualitative behavior of the projec-
tion of the line of intersection depending on the pa-
rameters c1 and c2. We see that the c1–c2 plane is
partitioned into four regions, labeled 1–4. Nontriv-
ial equilibria in which the host and both symbiont

c1

c2

P

Q

P

Q

P

Q

P

Q

1 2

34

2

2
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1
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d
d
be
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1
2 b

d
d
be

Fig. 6. The coordinate systems within each of the four regions illustrate the qualitative behavior of the line of intersection of the mutualist
and cheater isoclines. The horizontal and vertical solid lines are the same as the dashed lines in Fig. 5.

densities are positive are the points where the line
of intersection of the P and Q isoclines intersects
the H isocline in the positive octant. According to
Fig. 6, there cannot be such a point of intersection in
region 4.
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The equation of the projection of the intersection of
the Q and H isoclines onto the P–Q plane is given by

Q =
K − (d2/b2) − ((a1/r)K

+c2(d2/b2) − γ)P − γ(a1/r)P2

(a2/r)K + e2(d2/b2) + γ(a2/r)P

The equation of the projection of the intersection of
the P and H isoclines onto the P–Q plane is given by

Q =
K − (d1/b1) − ((a1/r)K

+e1(d1/b1) − γ)P − γ(a1/r)P2

(a2/r)K + c1(d1/b1) + γ(a2/r)P

These two intersection curves are qualitatively simi-
lar. There is a critical value γc so that for γ < γc,
(dQ/dP) < 0 at P = 0, and, in fact, (dQ/dP) < 0
for all P ≥ 0, whereas for γ > γc, (dQ/dP) > 0 at
P = 0 and Q as a function of P is first increasing, then
decreasing for P > 0 so that (dQ/dP) < 0 when the
curve intersects the P-axis (see Fig. 7). Based on the
shape of these projection curves, there can thus be no
more than one nontrivial equilibrium in region 1 and
up to two nontrivial equilibria in regions 2 and 3.

Once an equilibrium is found, its stability can be an-
alyzed using the standard methods (linearization and

Mutualist
0 1 2 3 4 5 6 7

C
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er
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2

3

4

5
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high

Fig. 7. The qualitative behavior of the line of intersection of the mutualist and the host isoclines depends on γ . The solid line is for γ

small, the dashed line for γ large.

eigenvalues). For the general case, this is algebraically
quite involved, in particular for the nontrivial equilib-
ria. However, it is possible to predict existence and
stability of nontrivial equilibria based on the geomet-
ric considerations (described above) and the stability
of the boundary equilibria. This can then be checked
for specific parameter choices. It allows us to find
parameter combinations that have the desired proper-
ties, such as the switch from mutualism to parasitism
as soil fertility increases. This procedure was used to
produce Tables 1 and 2.

For Table 1, we chose the parameter values so that
(c1, c2) is in region 1 (Fig. 6). For small values of
K, the point (c1, c2) is above the line c1 = e2λ

P
2 /λP

1
and for large values of K below that line. Table 1 lists
some values of K that indicate that the switch from “P
wins” to “coexistence” with unstable boundary equi-
libria indeed occurs.

For Table 2, we chose parameter values so that (c1,
c2) is in region 2 (Fig. 6). For small values of K, (c1, c2)
is above the line c2 = e2λ

P
2 /λP

1 and to the left of the

line c1 = e1λ
Q
1 /λ

Q
2 . As K increases, first the line c2 =

e2λ
P
2 /λP

1 crosses the point (c1, c2), then the line c1 =
e1λ

Q
1 /λ

Q
2 . For the values in Table 2, at small values
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of K the cheater cannot invade but since γ is large,
there exists a nontrivial, locally stable equilibrium (in
addition to a nontrivial, unstable equilibrium). As K
increases, both boundary equilibria become unstable
and only one nontrivial equilibrium exists. A further
increase in K then results in a situation where the
cheater can outcompete the mutualist.
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