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Abstract. Suspended organic and inorganic particles, resulting from the in-

teractions among biological, physical, and chemical variables, modify the opti-

cal properties of water bodies and condition the trophic chain. The analysis of
their optic properties through the spectral signatures obtained from satellite

images allows us to infer the trophic state of the shallow lakes and gener-

ate a real time tool for studying the dynamics of shallow lakes. Field data
(chlorophyll-a, total solids, and Secchi disk depth) allow us to define levels of

turbidity and to characterize the shallow lakes under study. Using bands 2

and 4 of LandSat 5 TM and LandSat 7 ETM+ images and constructing ade-
quate artificial neural network models (ANN), a classification of shallow lakes

according to their turbidity is obtained. ANN models are also used to de-

termine chlorophyll-a and total suspended solids concentrations from satellite
image data. The results are statistically significant. The integration of field

and remote sensors data makes it possible to retrieve information on shallow
lake systems at broad spatial and temporal scales. This is necessary to under-

standing the mechanisms that affect the trophic structure of these ecosystems.

1. Introduction. More than 10,000 permanent or temporary shallow lakes exist
in the province of Buenos Aires, Argentina [5]. They form a system of wetlands that
covers more that one million hectares, distributed in both permanent and temporary
water bodies called “lagunas”. Their surfaces vary in the range of 10 to 40,000 ha,
following the alternation of humid and dry periods characteristic of the Pampean
climate.

The numerous lentic water bodies characteristic of the Pampean region are gen-
erated by very low slopes and natural obstruction to drainage, together with the
processes of wind deflation that occurred during the quaternary period, and the
present humid climate [8].

The Pampean “lagunas” are defined as shallow flatland lakes, polymictic, eu-
trophic and having highly variable water permanence time and a high biomass in
their biotic communities [24]. These wetlands do not exhibit thermal stratification.
Normally they are subject to periods of floods and droughts that change their vol-
ume. Both water and sediments are disturbed by winds. This generates a constant
resuspension of sediments that releases nutrients and reduces oxygen in the water
column. These shallow lakes have highly variable salinity and turnover rates, are
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naturally eutrophic, and suffer from environmental stress which increases even more
their nutrient contents.

These conditions generate wide ranges of values of suspended sediments, phyto-
plankton, and dissolved organic matter, resulting in different turbidity states that
modify the optic characteristics of the water. Most important, this also conditions
both the trophic type and the biogeochemical fluxes in the shallow lakes [31].

Within this generality, the shallow lakes exhibit stages of clear waters and of
turbid waters depending on the phytoplanktonic biomass, the presence of macro-
phytes, and the concentration of suspended inorganic solids. Shallow lakes in the
clear water stage are more transparent and hence light penetration is deeper. This
allows the development of submerged macrophytes. Various mechanisms related to
the presence of macrophytes, such as shading, reduction in resuspension by wind
effects, reduction in nutrient availability, and abundance of zooplankton which en-
hances grazing, usually combine to produce a reduction in chlorophyll [31]. In these
clear shallow lakes there is a dominance of fish related to the community of sub-
merged macrophytes and coexisting organisms, which facilitate the fishes’ laying in
wait and other activities as visual predators.

Shallow lakes in the turbid water stage are characterized by a biomass increase in
all the pelagic communities due to a higher availability of nutrients that are taken by
phytoplankton to the detriment of macrophytes. Moreover, different trophic states
can be observed depending on the relative concentrations of suspended organic and
inorganic matter in the water column. In the so called green shallow lakes, water
turbidity is mainly caused by the presence of abundant phytoplanktonic biomass,
while the brow- shallow lakes are characterized by a higher concentration of inorganic
suspended matter arising from the sediment as an effect of the wind or from the
surrounding landscape due to land use in the basin.

The environmental heterogeneity has lead to a partial and non-extrapolatable
knowledge of the Pampean shallow lakes. The complexity of these ecosystems in
general, and of their trophic structure in particular, makes very difficult to generate
one general model for the functioning of the Pampean shallow lakes. Given the high
number of shallow lakes and the extension of their spatial distribution, the use of
remote sensors and the processing of satellite images become adequate complements
to an integrated study of these water bodies. Developing a tool for the remote
observation of such an ecosystem is necessary for establishing reasonable scenarios
for management and decision-making.

The optic properties of terrestrial objects and, in particular, water, are properly
perceived by the TM and ETM+ sensors located in LandSat 5 and LandSat 7 satel-
lites respectively. Moreover, the spatial resolution of LandSat imagery is adequate
for capturing the reduced size of the majority of Pampean shallow lakes. Obviously,
it is essential that the data obtained by remote sensors be calibrated with field data
in order to obtain a supervised classification of the water bodies.

The sensors are capable of capturing information in the form of spectral sig-
natures which can be processed and become input for models which integrate
these data and field data. Three components –suspended sediment, phytoplank-
ton biomass (chlorophyll-a concentration) and dissolved organic carbon– are also
the major factors that control the spectral signatures of water bodies [11]. This
allows a more thorough analysis of the dynamics of these shallow lakes and helps
to adequately identify, on the basis of objective and reproducible information, the
successive states that appear seasonally or cyclically.
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There is abundant literature on the use of remote sensors combined with artificial
neural networks for the study of chlorophyll and sediments in oceanic and coastal
waters. Estimates of chlorophyll and sediments in inland lakes using remote sensing
have been developed mostly through the use of techniques based on simple or mul-
tiple linear regression models. Liu and collaborators [16] review the performance of
different sensors and models for quantifying water quality parameters and analyze
the use of linear and nonlinear models to determine the relationship between in situ
samples and their corresponding remotely sensed data.

Svab and collaborators [33] analyze the best band combinations from LandSat
TM and ETM+ for quantifying chlorophyll-a and suspended sediment concentra-
tions. They find appropriate correlation coefficients between band 3 and suspended
solids and between band 4 and chlorophyll-a for values bellow 200 mg/m3. Their
results confirm that suspended sediment rich water hides the spectral characteristics
of chlorophyll-a when at relatively low concentration (typical environmental con-
centrations are bellow 100 mg/m3 Chl a), especially for coarse spectral resolution
platforms such as Landsat. At higher chlorophyll-a concentration, chlorophyll spec-
tral characteristics begin to overcome the inorganic suspended sediment reflectance
characteristics. [33].

Simple linear regression models ([17] [1]), multiple linear regression models ([32]
[25] [2]), and nonlinear regression models ([20] [10]) have been applied to chlorophyll-
a and suspended sediment quantifications. Liu [16] states that linear regression
models are invalid for inland and shallow coastal waters that have a higher con-
centration level of water constituents or a higher degree of optical complexity than
clear oceanic waters. Also, the relationship between field samples and their corre-
sponding remotely sensed data can be linear or non-linear, but are nearly always
site-specific [16].

For this reason, nonparametric statistical techniques such as neural network anal-
ysis have been introduced to model the transfer function between chlorophyll and
sediment concentrations and satellite-received radiance with a much higher accuracy
than multiple regression analysis [14].

The general purpose of our research is to understand the structure and the func-
tioning of the Pampean shallow lakes through the development of observation and
monitoring tools. The spatial and temporal analysis will be based on the integration
of data collected from the field and data retrieved from remote sensors, as well as
the construction of adequate mathematical models.

Considering the possibly high number of samples that will be handled in an
in-depth study of a given region, it is necessary to develop an automatic spatio-
temporal analysis system with the capability of supervision. The tool presented here
is part of such a system which also includes other modules for studying frequencies
of appearance of temporary shallow lakes, recurrence of flooded areas, changes in
individual lake area, spatial behavior of permanent water bodies [6], and spectral
unmixing of components [7], among other tools.

The purpose of this paper is to determine if Landsat TM and ETM+ can be
used to estimate trophic state parameters for shallow lakes in the Pampean region.
The objectives are to develop and apply ANN models: (a) to the classification of
Pampean shallow lakes following their turbidity, and (b) to relate Landsat TM and
ETM+ reflectance to the trophic state parameters by quantifying chlorophyll-a and
total solids concentrations.
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2. Materials and methods.

2.1. Location. Eight shallow lakes located in different basins of the Province of
Buenos Aires, Argentina, were selected for the development, calibration, and vali-
dation of the methodology here proposed. The “lagunas” or shallow lakes selected
for this study are located in the districts of Juarez (San Antonio, La Salada, El
Chifle and La Barrancosa), Balcarce (La Brava) and Laprida (El Paraiso, Quilla
Lauquen, and Del Estado), on the water divide of the large hydrographic basins
of the Province of Buenos Aires (Salado river, South streams, South-East streams,
and South channels, [26]). (See Map 1)

MAP 1: Location of the study shallow lakes.

2.2. Field data. The field sampling was carried on between December 2004 and
August 2006. The number of trips to each shallow lake were: eight for La Brava;
twelve for Del Estado, Quilla Lauquen, and El Paraiso; sixteen for La Salada, El
Chifle, and San Antonio; and seventeen for La Barrancosa. Field measurements
performed in each of the shallow lakes included Secchi disk depth, and laboratory
analyses provided chlorophyll-a and total solids concentrations, among other vari-
ables. Table 1 shows minimum, maximum, and mean values of Secchi disk depth,
chlorophyll-a and total solids measured at each shallow lake.

The values of chlorophyll-a and total solids (TS) in the samples and the Secchi
disk depth were used to perform a classification of the shallow lakes from field data
following their turbidity. An initial classification was done by defining the quantile
probability distribution [27]. Four categories were later defined from the quantile
probability distribution and the expertise acquired in the field:

Class 1, formed by clear water shallow lakes
Class 2, formed by shallow lakes presenting intermediate turbidity values
Class 3, formed by shallow lakes exhibiting high values of chlorophyll
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Class 4, formed by shallow lakes exhibiting the highest values of chlorophyll
and total solids.

These categories were later used for training the artificial neural network (ANN).
Table 2 shows mean, minimum, maximum, median, first and third quantile for each
variable.

TABLE 1: Minimum, maximum, and mean values of chlorophyll-a and
total solids measured at each shallow lake.

TABLE 2: Mean, minimum, maximum, median, first and third quantil
values for chlorophyll-a, total solids (TS) and Secchi disk depth (SDD)

defined for each class.

2.3. Remote sensors data. The National Commission for Space Activities (Comi-
sion Nacional de Actividades Espaciales, CONAE) provided sixteen satellite images
(224/86, 225/86, and 226/86), ten from LandSat 5 TM and six from LandSat 7
ETM+. The delay between the dates of the field trips and the satellite images was
kept below six days [22]. Dates of satellite images and field samplings can be seen
in Table 3.

One main concern when using remote sensing in shallow lakes is bottom inter-
ference. To make sure that the bottom did not influence the results, the shallow
lakes were selected so that their depth was at least twice their Secchi disk depth
[22], and hence reflectance from vegetation or the lake bottom would not affect the
spectral signature (Table 4).



696 G. CANZIANI, R. FERRATI, C. MARINELLI, AND F. DUKATZ

TABLE 3: Detail of the type and dates of images and dates of field sampling.

Several factors influence satellite images. Some are due to interactions of light
with the atmosphere either by absorption or dispersion (Rayleigh and MIE among
others), while other factors, such as distance from Sun to Earth and solar incidence
angle, vary seasonally. The corresponding radiometric corrections were carried on
using the conversion to radiance methods proposed by the USGS ([35] [21] [3] [4]).

In the area under study, no appropriate atmospheric data were available to accu-
rately estimate the optical thickness of the atmosphere. Simple atmospheric correc-
tion methods, such as the dark object subtraction method to estimate haze, were
not applicable because of the lack of dark objects such as deep water-bodies. To ob-
tain surface reflectance values free from molecular scattering that reach the sensors
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as a result of the interaction between electromagnetic radiation and the molecular
components of the atmosphere, an atmospheric correction (Rayleigh method on the
radiance as proposed by Kaufman [13]) was performed.

TABLE 4: Secchi disk depth (cm), chlorophyll-a concentrations (mg/m3),
and total solids concentrations (mg/l), measured in the field and computed
from the satellite images using an ANN, at given shallow lakes and dates.

After the images were corrected and geo-referenced, the water bodies were sep-
arated from the rest of the image so as to avoid the influence of neighboring pixels
(Map 2). Band 4 of TM was chosen for classifying inland shallow lakes using remote
sensing techniques, yielding more satisfactory results than Band 5 (Priscilla Minotti,
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pers. comm.). The threshold values for a water mask are to be obtained interac-
tively. In this case, the upper threshold used for trimming the shallow lakes was
0.1. Then, an area of interest (AOI) was defined for each water body individually.

MAP 2: Examples of water masks in the same region at different dates. Note
variations in water-covered areas.

Once the water-covered surfaces were isolated using the appropriate mask, their
individual spectral signatures were retrieved from the average values of the set of
pixels in the AOI, as shown in Figure 1. A total sample of thirty-three spectral
signatures was obtained.

FIGURE 1: Spectral signatures of the eight selected shallow lakes recorded at
different dates: (La Barrancosa (LB), Quilla Lauquen (QL), San Antonio (SA), La

Salada (LS), El chifle (ECH), Del Estado (DE), La Brava (LBR) y El Paráıso
(EP)). X-axis: bands (1,2,3,4,5 and 7), Y-axis: reflectance (%)

In most shallow lakes, light is predominantly absorbed by particulate matter such
as phytoplankton cells and suspended sediment particles. Given that this absorbent
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matter is colored, light absorption is not even for all wavelengths and some colors
will penetrate more deeply than others. The apparent color of water is a very
valuable characteristic for the functional differentiation of water bodies in a region.
Suspended and dissolved matters contribute differently to dispersion and absorption
of light [15]. For example, suspended clay particles produce greater dispersion, while
dissolved organic substances produce absorption only. Phytoplankton contribute to
both dispersion and absorption. Total absorption and dispersion coefficients in any
given wave length are a result of the sum of the individual contribution of water,
phytoplankton, suspended sediments and organic compounds [23].

Hence, it is important to detect the patterns of “extreme” spectral signatures
in the sample. In Figure 1, the spectral signature drawn in the thick solid black
line corresponds to “La Brava” shallow lake, which is considered a clear water
body and exhibits minimum values for chlorophyll and suspended solids as well as
maximum depth for Secchi disk (Class 1). The spectral signature drawn in the thick
solid gray line corresponds to “Del Estado” shallow lake, a turbid water body, in
extreme condition of maximum concentration of chlorophyll and suspended solids
and minimum depth values for Secchi disk (Class 4). Note that the wider ranges
of differences in the samples appear in Band 2 (visible spectrum) and Band 4 (near
infrared).

2.4. Canonical correlation analysis. Canonical correlation analysis seeks to
identify and quantify the associations between two set of variables [12]. This method
focuses on the correlation between a linear combination of the variables in one set
and a linear combination of the variables in another set. The idea is first to de-
termine the pair of linear combinations having the largest correlation. Next, to
determine the pair of linear combinations having the largest correlations among all
pairs uncorrelated with the initially selected pair. The process continues.

The pairs of lineal combinations are called the canonical variables, and their
correlations are called canonical correlation.

When performing the analysis of covariance structure, the interest is focused in
finding measures of association between two groups of variables. In this work, we
are interested in identifying the associations between groups of bands. The maxi-
mization aspect of this technique is centered in reducing the problem’s dimension.

Through canonical correlation analysis we observe the redundancy among the
two groups which allows asserting that all the information of a group of variables
is explained by other.

2.5. Artificial neural network models.

2.5.1. ANN models vs. linear regression models. In applied research it is very com-
mon to find situations in which a response variable should be estimated or its
behavior predicted as a function of one or several predictor variables. When the re-
sponse variable is quantitative the situation is considered an estimation or prediction
problem. When the response variable is qualitative or categorical it is considered a
classification problem.

Traditionally, the solution of these problems has been found through the use of
statistical regression models such as simple or multiple regressions for prediction
problems, and discriminant analysis or logistic regression models for classification
problems. However, almost all these techniques are based on the so called multiple
linear regression model.
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This type of statistical model has been widely analyzed in the literature. Their
applicability requires that the conditions on normality and equality of variances
are satisfied, as well as independence, linearity, and sufficient sample size. The
significance is optimal when the correlation between the predictor variables and the
response is high while the correlation among predictor variables is low. In other
words, colineality should not exist.

Ecological data in general do not fulfill the assumptions on normality and ho-
mogeneity of the variance. In several cases, it has been corroborated that observed
environmental variables exhibit multicolineality. Hence, multiple linear regression
models are not appropriate for analyzing the data involved in this study.

Progressively, artificial neural network models are being used as prediction and
classification tools. In fact, ANNs have been conceptualized as nonparametric sta-
tistical techniques because they do not require the fulfillment of the theoretical
assumptions of parametrical statistics. They are also considered nonlinear regres-
sion techniques.

2.5.2. Construction of an ANN model. An ANN model imitates the physical process
of learning in the human brain. The model is formed by artificial neurons that
emulate biological neurons and the synaptic connections among them, regulating
them through the process of problem solving. They are appropriate for dealing with
a large set of variables and their non linearity is convenient for analyzing complex
systems. Once the system of neurons has been trained, the network allows the
processing of imprecise information, the generalization of known responses to new
situations, and the prediction of outcomes.

The network needs to be “trained” with a sufficiently large number of examples
in order to be able to make the appropriate inferences. Hence, it is given groups of
input data together with the expected output data (Fig. 2).

FIGURE 2: Artificial Neural Network model used for data analysis.

The links with the neurons located in the so-called hidden neuron layer then
take different weights and are educated depending on the required output, thus
modeling complex relationships among variables. The system requires feedforward
and backpropagation processes to allow the network to get trained. The visualization
of this stage is accomplished through error analysis. If the error becomes smaller
and asymptotic, the network will be ready to receive new input data and predict
output.

The ANN models used in this study are of the multilayer perceptron ANN type.
([28] [19]). The architecture is as shown in Figure 2. In each case, the training of
the proposed network was performed with a back propagation algorithm which is a
supervised learning procedure ([29] [30] [18]). It usses a method of descent on the
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gradient for minimizing the global quadratic error of the output calculated by the
network.

Different ANN models were built for the following objectives:
Classification of shallow lakes. A first ANN was constructed with the purpose

of classifying the shallow lakes into the four proposed classes using remote sensors
data. This ANN was educated using as input data Bands 2 and 4 of LandSat 5 TM
and LandSat 7 ETM+ sensors, and the classes obtained from field data as output
values.

Concentration of total solids and chlorophyll. The purpose is to determine from
satellite data the concentration of total suspended solid matter and of chlorophyll-a,
with an acceptable error margin. Thus two ANN were constructed and fed with
the reflectance values retrieved from Bands 2 and 4 of LandSat 5 and LandSat 7
satellites, taking the concentration values from field samples. In the first case, both
sets of data (chlorophyll-a and total solids) were run together, and in the second,
they were treated separately in order to test the robustness of the method.

3. Results.

3.1. Classification of shallow lakes using an ANN. As mentioned above, an
ANN was constructed for classifying the shallow lakes into the four proposed classes.
Following the classification of shallow lakes using remote sensors data, this ANN
was educated using as input data Bands 2 and 4 of LandSat 5 TM and LandSat 7
ETM+ sensors and the classes obtained from field data as output.

When performing the analysis of covariance structure, two set of bands were
observed: a first group included Bands 2 and 4 and a second group Bands 1, 3,
5 and 7. This was corroborated with canonical correlation analysis (p<0.05) (see
Table 5)

TABLE 5: Canonical analysis summary regarding bands selection.

Here the total redundancy is less than 50% in both left and right sets. Hence,
both sets explain the same information. The first group was selected because bands
2 and 4 represent information adequate for the development of the spectral unmixing
tool for deriving sub-pixel information for more accurate estimates [7], which is also
part of the complete study.

The network was tested with different numbers of learning stages or epochs, dif-
ferent learning rates, and different numbers of neurons in the hidden layer. The
model run using 80% of data for training and 20% for predicting, yield the approx-
imation shown in Figure 3, where the plots showing both real data and the output
of the ANN model coincide. In all cases the learning error becomes null in less than
20,000 epochs (Fig. 4). Hence the prediction error is zero, which means that the
classification method is accurate.
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FIGURE 3: Classification of shallow lakes following their turbidity using field data
(black line): the ANN model output (gray line), obtained in the training and
prediction stage using 80% of data for training and 20% data for predicting,
coincides. The vertical line separates both sets. X-axis: shallow lakes, Y-axis:

class.

FIGURE 4: Learning error for the classification ANN model. X-axis: epochs,
Y-axis: maximum absolute error.

3.2. Concentration of total solids and chlorophyll-a using an ANN. The
networks were trained using 36 input data. As shown in Table 4, 33 values were ob-
tained from field sampling matching the satellite image dates. In this data set, Class
1 (clear shallow lakes) is underrepresented. To balance the classes, the technique of
repeating a particular datum was used. In this case, the datum corresponding to
La Brava, a typical clear water shallow lake, was taken three more times. Note that
both the minimum and the maximum values in the data set should be included in
the learning set. Thus these two extremes were included in this set, which was then
completed by a random choice of the other data in order to fulfill the portions of
75% for learning and the remaining 25% for predicting.
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The first tested ANN was constructed using as output both chlorophyll-a and
total solids (TS) concentrations. This model ran over 2,000,000 epochs with a learn-
ing rate of 0.00001. The number of hidden neurons varied until a best configuration
was attained. The results are plotted together with the measured total solids values
obtained in the field (Fig. 5).

FIGURE 5:Concentration of total solids and chlorophyll-a when ANN runs are
performed using both sets together, using field data (black line) and the ANN

model output (gray line) obtained in the training and prediction stage using 75%
of data for training and 25% data for predicting. The vertical line separates both
sets. X-axis: shallow lakes, Y-axis: chlorophyll-a [10−3 mg/m3] and total solids

[10−4 mg/l] concentrations.

Learning and predicting errors expressed as the maximum module of the absolute
differences and divided by 1,000 (chlorophyll-a) y 10,000 (TS) behave asymptotically
(Fig. 6 (a) and (b)). The learning error exhibits a decreasing tendency and yielded
the results for chlorophyll and TS shown in Table 4, columns 5 and 7.

Separate runs were performed to observe the behavior of an ANN for each of the
data sets. For chlorophyll-a, ANN models with two, three and more neurons in the
hidden layer were run over 1, 1.5 and 2 million epochs with learning rates between
0.00001 and 0.0000001. The best results were obtained with two neurons in the
hidden layer and a learning rate of 0.00001 (Fig. 7).
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(a) (b)
FIGURE 6. Learning (a) and predicting (b) errors for the concentration

of chlorophyll and total solids when ANN runs are performed with
both data sets jointly. X-axis: epochs, Y-axis: maximum absolute

error.

FIGURE 7: Concentration of chlorophyll-a using field data (black line) and the
ANN model output (gray line) obtained in the training and prediction stage using
80% of data for training and 20% data for predicting. The vertical line separates
both sets. X-axis: shallow lakes, Y-axis: chlorophyll concentration [10−3 mg/m3].

Learning and predicting errors were approximately 42 and 52 mg/m3 respectively
(Fig. 8 (a) and (b)).
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(a) (b)
FIGURE 8. Learning (a) and predicting (b) errors for the

concentration of total solids. X-axis: epochs, Y-axis:
maximum absolute error.

When the hidden layer contained three neurons, the learning error was reduced
but the prediction error increased monotonely. Increasing the number of neurons
does not lead to convergence in the results.

FIGURE 9: Concentration of total solids (10−3 mg/l) using field data (black line)
and the ANN model output (gray line) obtained in the training and prediction

stage using 80% of data for training and 20% data for predicting. The vertical line
separates both sets. X-axis: shallow lakes, Y-axis: total solids concentration [10−4

mg/l].
The same analysis was performed for TS. Similar results were obtained for two

and three neurons in the hidden layer and a learning rate of 0.00001 (Fig. 9).
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Learning and predicting errors were approximately 200 and 320 mg/l respectively
(Fig. 10 (a) and (b)).

(a) (b)
FIGURE 10. Learning (a) and predicting (b) errors for the concentration of total

solids X-axis: epochs, Y-axis: maximum absolute error.
To test the performance of the method, both ANN models were run taking the

data of all but one shallow lake for training and then predicting the values for the
remaining one. This allowed to estimate how well did the ANN model respond
when attempting to predict variability within the same water body. Table 6 shows
the results when chlorophyll-a and total solids values are within a reasonable range
from the median values of the samples.

TABLE 6: Performance of the ANN models as predictors of TS and chlorophyll-a
concentrations for different target lakes: a random selection of shallow lakes, La
Barrancosa, San Antonio, El Chifle-La Salada and El Chifle-El Paraiso shallow

lakes.

3.3. Validation of results. To validate the results obtained from the ANN mod-
els, a dispersion diagram was done. It allows analyzing the behavior of measured TS
and computed TS from available data, excluding the values that distort the sample.
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Figure 11 shows a positive tendency and a strong association between the two sets
of variables. A simple linear regression analysis, taking as response variable the
measured TS values, was performed with the purpose of quantifying the tendency.
The regression analysis for TS yields a determination coefficient R2 = 0.94, a mean
square error of 0.01 and a fitted regression line

Measured ln TS = 0.41 + 0.94 Computed ln TS (p < 0.01).

The graph, confidence bands, and prediction are shown in Figure 11.
Regarding measured and computed chlorophyll-a concentrations, the regression

analysis yields a determination coefficient R2 = 0.86, a mean square error of 0.09
and a fitted regression line.

Measured ln CL = −0.09 + 1.01 Computed ln CL (p < 0.01).

The graph, confidence bands, and prediction are shown in Figure 12.
In both cases, the residuals analyses indicate independence, normality, and ho-

mogeneity in the variance, which permits to assert that the regression model is a
good fit. The same simple linear regression analysis was repeated on the measured
and the calculated data obtained from each ANN model. Table 6 synthesizes the
results for different ANN output, when each of the shallow lakes in was predicted
using the remaining lakes data for training the network.

FIGURE 11: Regression analysis of measured and calculated total solids with
confidence and prediction bands.

When the median value of the selected shallow lake is close to the total sample
median, a positive association (> 85%) between the two sets (calculated and mea-
sured values) can be observed. The values of the absolute predicting error confirm
the good fit. When the median value of the selected shallow lake is close to an
extreme value, the determination coefficient is lower and the values of the absolute
predicting error are high.



708 G. CANZIANI, R. FERRATI, C. MARINELLI, AND F. DUKATZ

FIGURE 12: Regression analysis of measured and calculated chlorophyll with
confidence and prediction bands.

4. Discussion and conclusions. Pampean shallow lakes are mostly eutrophic
and hypereutrophic. Our collection of samples shows chlorophyll-a values between
45 and 1400 mg/m3 and total solids values between 507 and 2881 mg/l. These
lakes challenge the usual methodologies because of the influence that this charac-
teristic has on the optic properties captured by the satellite sensors. Not only they
exhibit high concentrations of chlorophyll-a and total solids but also high temporal
variability within the same water body.

Much of the published research on shallow lakes is based on LandSat imagery, and
the methods have been mostly developed for water bodies that exhibit chlorophyll-a
concentrations below 100 mg/m3 ([34] [33] [16]).

Our ANN models have proven to be very adequate for the classification of shallow
lakes following their turbidity, yielding accurate output relative to the quantile
probability distribution obtained from field data. Thus this methodology can be
confidently used for classifying other shallow lakes of the region.

The combination of field data, spectral determination and ANN models for esti-
mating total solids and chlorophyll-a concentrations from bands 2 and 4 of Landsat
TM and ETM+ on the pampean shallow lakes produced satisfactory results. ANN
models here developed seem capable of dealing with the above-mentioned wide range
of concentrations with low error and good confidence values, as shown in Table 6.
This is stressed by the validation using regression analysis. The predicted values
here obtained validate the use of ANN models for concentrations of chlorophyll-a
and total solids as high as 260 mg/m3 and 1950 mg/l respectively.

Even though the training set is relatively small, our ANN models yield very good
predictions when the predicted values fall within a certain range of the median values
of the training data set. It can be expected that the precision of the prediction
will improve as the training set becomes larger. The errors increase when the
predicted values are closer to the extreme values of the training data set. This is
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very reasonable given that there are fewer input data points in the neighborhood of
the extremes. However, the determination coefficients thus obtained confirm that
the results from ANN models are very satisfactory.

This method can be used to gain knowledge on the trophic state of the numerous
shallow lakes in this region in real time from Bands 2 and 4 of the LandSat TM
and ETM+ images. ANN models here constructed are useful because they permit
one to extrapolate the information obtained in field work in a number of shallow
lakes to the whole set of similar water bodies in the region and thus contribute to
understanding their dynamics as a system. It is important that the database used
for training the ANN models includes a balanced representation of typical shallow
lakes in all the classes.

The methodology presented here is one initial step in the construction of a data-
base that will allow the study of patterns of behavior and responses of these shallow
lakes to different phenomena. From the optical properties of water bodies, it is pos-
sible to quantify the components that influence these properties. Artificial neural
network models appear to be efficient tools for estimating the contribution of par-
ticular components, such as chlorophyll-a and total solids. The temporal analysis
of these variables together with the frequencies of appearance of temporary shallow
lakes, recurrence of flooded areas, changes in individual lake area, spatial behavior
of permanent water bodies will contribute to understand the complex dynamics of
the system. Hence it is possible to use remote sensors data for monitoring the evo-
lution at either local or regional scale of these variables, or to infer the changes in
state or stages of shallow lakes by following changes in turbidity.
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