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Quantum vs. Classical Turbulence in Superfluids

Introductory talk @ ICTP, Trieste, March 17, 2009

Victor S. L'vov

Department of Chemical Physics,
Weizmann Institute of Science, Israel

Because superfluid eddies can only be formed from quantized vortex lines, one
might expect quantum turbulence to be very different from its classical
counterparts. But that's not necessarily so.

W.F. Vined and R.J. Donnelly, 2007
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Turbulence in the Universe
from Galactic scales (1018 =~ 1010) Km to Planetary scales (10% +~ 103) Km

M100
HST-WFPC2

Spiral Galaxy M-100 in Coma Benerices. Distance ~ 610" light years
(Left) and Tropical Hurricane Gladis, Oct. 1968 (Right)
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e Turbulence on human scales (meters): Ottadalen, Norway, Aug.2003
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e Some engineering aspects of turbulence
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Turbulent Boundary Layer:
Computer simulated turbulent
air pressure: sonic boom
behind supersonic aircraft
Lockhid 3A

Turbulent fuel combustion

in an aircraft engine







Basic models of hydrodynamics:
The Euler Equation

The Euler equation for v(r,t) is the 2nd Newton’s law for the fluid particle:

Fluid particle Pressure
Acceleration Force
Ov(r,t)
p[ Y + (v - V)v} — (=Vp) =0, Leonard Euler, 1741.



Basic models of hydrodynamics:
The Euler and Navier-Stokes equations

The Euler equation for v(r,t) is the 2nd Newton’s law for the fluid particle:

Fluid particle Pressure
Acceleration Force
Ov(r,t)
p[ Y + (v - V)fv} — (=Vp) =0, Leonard Euler, 1741.

The Navier-Stokes equation accounts for the viscous friction:

0 t
ol ”g';’ ) | (v-V)v| +Vp= (pv)Av, Claude L.M.H. Navier, 1827,
Nonlinear viscous (George Gabriel Stokes, 1845.
interaction friction



Basic models of hydrodynamics:
The Euler and Navier-Stokes equations

The Euler equation for v(r,t) is the 2nd Newton’s law for the fluid particle:

Fluid particle Pressure
Acceleration Force
6 t h
p[ vg;, )—|— (v-V)v} — (=Vp) =0, Leonard Euler, 1741.

The Navier-Stokes equation accounts for the viscous friction:

0 t
ol ”g';’ ) 4 (v-V)v| +Vp= (pv)Av, Claude L.M.H. Navier, 1827,
Nonlinear viscous George Gabriel Stokes, 1845.
interaction friction

Osborne Reynolds (1894) introduced “Reynolds number” Re
N uVv N LV

Re = ~ ~
vAv 1%

as a measure of the nonlinearity of the NSE.
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e Lewis Fry Richardson (1920) cascade model of turbulence:

“Big whirls have little whirls

That feed on their velocity

And little whirls have lesser whirls

And so on to viscosity”

L.F. Richardson, paraphrase of J. Swift

m
< Hurricane Bonnie, V- ~ 300—,

S
Reynolds number at H ~ 500m

Vo H
Re = T~ ~ 1010 > Recr ~ 102

v

Unstable H, V. -eddies create smaller Hy, Vi-eddies with Re > Req > Recr.
T heir instability creates Ho, Vo-eddies of the second generation, end so on,
until Re, of the n-th generation eddies reaches Rcr and will be dissipated
by viscosity: Re >Rey >Rer > ... >Ren_1 > Ren > Recr.



Andrei N. Kolmogorov-1941 cascade model of homogeneous turbulence:

I. Universality of small scale
statistics, isotropy, homogeneity;
II. Scale-by-scale “locality” of the
energy transfer;

III. In the inertial interval of scales

the only relevant parameter is the

Re, > Re,> Re, > ... >Re > Re,~100
mean energy flux e .
\ Inertial interval Dissipative
Energy interval
Containing

Interval

Log E(R)

Energy

|
|
|
|
|
|
|
| Dissipation
|

|

|

Y

Log(1/R)
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Andrei N. Kolmogorov-1941 cascade model of homogeneous turbulence:

I. Universality of small scale statis-
tics, isotropy, homogeneity;

II. Scale-by-scale “locality’” of the
enerqgy transfer;

III. In the inertial interval of scales

the only relevant parameter is the

mean energy flux € .

Re, > Re,> Re, > ... >Re > Re,~100

= dimensional reasoning =

\ Inertial interval
Energy
Containing

Interval

Dissipative
interval

1. Turbulent energy of scale ¢ in
2/3 42/3

Log E(R)

Energy 2. Turnover and life time of

Dissipation
¢-eddies: 1, ~e1/3¢2/3
3. Viscous crossover scale
Log(1/R) no~ e 1/43/4 0 N~ Re3/M L

| |
| |
| |
| |
| |
| | inertial interval E,~pe
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| |

Y
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Velocity difference across separation r gives velocity of " r-eddies:”
Wi = ©(7,t) — 5(0,t), — Longitudinal velocity: Wt = Wi 7/r
Longitudinal velocity structure functions S (7) = ((W#)") oc 7 .
In particular: S5 (7) — Energy of 7 -eddies,
Ss(r) = —% 7 (Kolmogorov-41) — Energy flux on scale r,
S4(r) — 3 S3(r) — Deviation from the Gaussian statistics,

Son(7) /S5 (r) - Statistics of very rare events

r ¢n—n/3
St(r)=C, (F)n/?’ (E) , L — renormalization length .



Story begins: Superfluidity of 4He and 3He Bose condensation of 4 He- & Cooper-pairs of 3He-atoms
Q 1 model & Mutual friction [7]
d vortex lines [9]

Bose condensation

¢ Superfluid behavior of “He originates from a coherent particle field
— the condensate wave-function of “He atoms with p = 0 is
associated with Bose condensation of *He zero-spin atoms.

Te ~ 2.2K.
condensate
/
Nk
N
; k I u=0 k ¢ Nk .
Ty > T, > T3
47k? h?k? e
Nk = Ex = — N = nedk .
KT exp(Bx —p)/T—-1"  2m’ /0 K

o Superfluidity of 3He for T < t; ~ 2 x 10~3 K = Bardeen-
Cooper-Schrieffer condensate of Cooper-pairs of 3He-atoms, S = %

Quantum vs. Classical Turbulence in Superfluids 4/33



Story begins: Large— and small-scale turbulence in superfluids tual friction [7]
al friction [7

s [9]

Quantization of vortex lines, core radius ag and intervortex distance /¢

27h . . .
Vs-dr =nk, wherek = M is the circulation quant.

M =4 for*He and M = 6 for a pair of *He atoms.

a b

|—

9SvS ~dr=2nh/m

J

e / is the mean intervortex distance,
e Vortex core radius ap ~ 1A for *He & ap ~ 800A at low p.

Turbulent Energy Spectra in Superfluids 4134



Story begins: Large— and small-scale turbulence in superfluids

Quasi-classical Two-fluid model & Mutual friction [7]
Kelvir s of quantized vortex lines [9]

Two-fluid model (for scales L > ¢) & Mutual friction

“Coarse-grained" equation for the superfluid velocity U(r, t) 14

U
% +(1-a WU -VIU+Vu=-TU, T =auws.
e Chemical potential ;. serves as the pressure,
e o/(T) a(T) describe the mutual friction,

e Dissipative term I is taken in the simplified
form, where w is an effective vorticity.

e “Reynolds number"is q~! = (1 — o)/«

[1] E.B. Sonin, Rev. Mod. Phys. 59, 87 (1987) and G. E.
Volovik, JETP Lett. 78, 533 (2002).

Turbulent Energy Spectra in Superfluids 5/34



vo-fluid model & Mutual friction [7]
ized vortex lines [9]

#? {1+ Re[w”™(z1)w'(z2)]} dz1dz,
Ar ) 21— 22)2 + W(z1) —w(z2)2

¢ Hamiltonian form of Bio-Savart equations i Ha_w = IH{w, W} ,
ot ow*
e For small wave amplitudes, w < A\, H=Ho+Hs+He+ ...

. HZZZwk

k

e Energy (Hamiltonian) H =

ax|?, (ax = v/kwy) describes propagation of free KW

14

. AN 4 ~ , 4
with the frequency w = ~~k?, A = In <— ) = { 15, for He,
4 ao

~ 10, for3He.
e 7, and Hg describe 4- and 6-wave interactions

w1 +wr =w3+ws, and wi+ wr + w3 = w4+ ws + we

Turbulent Energy Spectra in Superfluids 6/34



Story begins: Large— and small-scale turbulence in superfluids —
v beg 9 F o) vo-fluid model & Mutual friction [7]
Kelvin waves of quantized vortex lines [9]

Effective 6-wave interaction coefficients Wk

1 . 1 *
Hy = — Z Tiozsajasa3as, He= 5% Z W12 34878583848586
142-3+4 1+243—44516
T1234 = T'i'fgz; +T12,34, W 123 456 = Wi£é7456 + W 123 456 -
LIA — Local Induction Approximation.
T&|2lj“34 ~ A Kkikokzks ~ Ak# , W&|2é,456 ~ N Kikaokskgkske ~ Ak® )
Tioas =~  Kikoksks ~ k*, W ips4s6 = Kikoksksksks ~ K° .

2" order perturbation theory:

2ot = et 472 ig}

W e = W123,456 + 72 {le2734/wk} , Wk ~ AkZ .

Complete integrability = oo # integrals of motion =
WéflfA =0 = ngka6<< AK® .

YED

Turbulent Energy Spectra in Superfluids



Story begins: Large— and small-scale turbulence in superfluids —
¥ beg g F vo-fluid model & Mutual friction [7]

ized vortex lines [9]

Six-wave Kinetic Equation (Kozik-Svistunov [9])

ong s
eff 2
t = 13/ WiLasasl Naaskaz = Ni2aas]

X §(wk w1t wr—wz—ws—ws)d(K+ky +ky —ks—ks—ks) dkydks. . . dks
Ni23.456 = N1N2N3(Nans + NaNg + NsNg)  has stationary solutions:
Nk o wk’l = energy-equipartition ;
nkS o~ (k3p)"1/° eY/5 |k| 717/ = constant-energy-flux ¢ along one vortex line.

In 3D space with the vortex-line density /=2 the KW energy density is
EKW _ /g;wdk7 EEW _ E,zwknk ~ /\E*Z(msp)fl/s 61/5 |k|77/5
With the flux of energy density (per unite mass) € = ¢/p¢? we got [3]:

Ec ~ Nke/®Y3|Kk|7T/5

Turbulent Energy Spectra in Superfluids 8/34



Story begins: Large— and small-scale turbulence in superfluids - —
Y beg 9 F Qu luid model & Mutual friction [7]
tized vortex lines [9]

From Classical to Quantum energy cascade [7]

KELVIN-WAVE CASCADE RECONNECTIONS RICHARDSON CASCADE
fa) o [
30
o[ 111380
o s O
/ :00 O
2 RS 20 R z
T §4 - < « 30 O) lef
5 o 0 O Q =
N7 8§00 Q
’ 0
/\z § 8 5 Q

suouoy g

Very small scales: Intermediate, Ve ry Iarg e

L <« /.
Vortex lines can Intsecrgll(ég[:ex Sca|eS

be considered
as independent L~/ I— >> g
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Turbulent Energy Spectra in Superfluids

Victor S. L'vov

Professor Department of Chemical Physics, Ph.D. student
Sergey V. Nazarenko Weizmann Institute of Science, Israel, - studen
Mathematics Institute, Oleksii Rudenko
Univ. of Warwick, UK Dep. of Chem. Phys.

Weizmann Inst.

= in collaboration with =

March, 2009 @ ICTP, Trieste

A !
e Large scale, Eddy-dominated energy spectra and short scale energy spectra
of Kelvin-waves are described uniformly, within differential approximation.

e Suggested natural physical hypotheses allow us to describe energy spectra

at intermediate region of scales, and at finite temperatures without fitting
parameters.

e Our model is in reasonable qualitative agreement with available experimental
results.



e Story begins: Large— and small-scale turbulence in superfluids
@ Quasi-classical Two-fluid model & Mutual friction [7]
@ Kelvin waves of quantized vortex lines [9]

9 Helsinki *He-B experiment and bottleneck scenario
@ Turbulent front propagation and rate of energy dissipation [5]
@ Quasi-classical model of propagating turbulent front [6]
@ Eddy-wave Bottleneck scenario [3]

9 Manchester “He experiment and theory of bottleneck spectra
@ Manchester spin-down “He experiment [8]
@ Differential models for classical-quantum energy fluxes [4]
@ Bottleneck energy accumulation and effective viscosity [4]
@ Energy spectra at finite temperatures



Turbulent Front Propagation
Helsinki 3He-B experiment and bottleneck scenario Quasi-classical model of propagating turbulent front [6]
Eddy-wave Bottleneck scenario [3]

Helsinki rotating ( below 10~3K) cryostat [5]
Low Temperature Laboratory, Helsinki University of Technology, Finland

NMR
pick-up coils

orifice

2 quartz
tuning forks

to heat
exchanger

Turbulent Energy Spectra in Superfluids 10/34



ting turbulent front [6]

seed vortex single-vortex turbulent vortex front relaxing equilibrium

in rotating flow instability burst and twist vortex state
twisted state =

V,=Qxr

=<Vg>

— = time
Resting (vortex-free) state of *He-B in rotating cell is meta-stable.
A seed vortex loop is injected in the vortex-free flow and the
subsequent evolution is depicted. Different transient states are
traversed, until the stable rotating equilibrium vortex state is reached.

Turbulent Energy Spectra in Superfluids 11/34



Helsinki 3He-B experiment and bottleneck scenario Quasi- od ting turbulent front [6]
tler

Velocity of the Front Propagation in rotating 3He-B [5
High Temperature (T > 0.4T¢) LAMINAR REGIME

|

Lol

Q0
0L °o AB 0.2
”oq’no o orifice
- afT)
| s | s |
0.3 0.4 0.5 0.6 0.0

T/T.

Vortex state behind the front is twisted: = Free energy difference and
front velocity are reduced by some factor: see green line.

Turbulent Energy Spectra in Superfluids 14/34




Turbulent Front Propagation
Helsinki 3He-B experiment and bottleneck scenario i- al model of propagating turbulent front [6]
)

enario [3]

Quasi-classical model of turbulent front propagation [

Global kinetic energy balance:

- R A(r)
—VfQZR4:27r/ rdr/ dz
4 0 0

K = 1(|u[?) turbulent kinetic energy density per unite mass, A(r)
-effective front width (outer scale of turbulence) b= (1-<a')bg,in
classical turbulent boundary layer by =~ 0.27,

' = awer — mutual friction damping.

bK32(z,r)

NG) +TK(z,r)

Ignoring z-dependence of K and I' one gets:

R ~
Vi Q?R* =87, Jz/ rdr [bK32(r) 4+ awer(r)A(HK(r) .
JO

Turbulent Energy Spectra in Superfluids 15/34



Turbulent Front Propagation
Helsinki 3He-B experiment and bottleneck scenario Quasi-classical model of propagating turbulent front [6]
Eddy-wave Bottlenec ario [3]

Quasi-classical model of turbulent front propagation [6]
Model comparison with Helsinki LTL experiment [5]

e Accounting for spatial turbulent
diffusion of kinetic energy toward the 08
centerline in the radial energy balance
gives A(r) ocr, K(r) oc r2,

0.6+ B
e Also one naturall n 4
. . y can suggest <) % 02 04 06
wert(r) is r-independent. > T,

Taking A(r)we(r) = aQr, (a~0.5), o

K(r) =c(Qr)?/2 (c ~ 1) one gets
Egs. || , show by _ = 0.2

Vi 4c c — e
R T [b(l - a/)¢;+ o} a} 00 5= (%‘_/4T —5

Below 0.25 T, data deviates down!

Turbulent Energy Spectra in Superfluids 16/34




Turbulent Front P jation
Qua of propagating turbulent front [6]

Helsinki 3He-B experiment and bottleneck scenario
Eddy-wave Bottleneck scenario [3]

Eddy-wave Bottleneck scenario [2]

k~"/5, Kelvin-wave cascade

x|n10/3(€/ao) to keep the same flux

Energy density

k_5/3, Kolmogorov cascade

1 »
e g
quantum crossover scale

e=const

&~ 2Bk TS e A (H76/68)1/5 [k|77/5
A=In(f/ag) > 1.

Turbulent Energy Spectra in Superfluids 17134



Turbulent Front Propagation
Helsinki 3He-B experiment and bottleneck scenario Q | model of propagating turbulent front [6]

tleneck scenario [3]

Eddy-wave Bottleneck scenario [2]
Balance of the energy density [1D energy spectrum E = | E,dk] in k-space:

de(k d(Ex /k?
di( ) _ g, e(k) = (1 — /) VKIE, % ,
Here (k) is taken in the Leiht-Nazarenko differential model
<2 y -F(0)
4.5+ ¢
4+ o ® ¢
3.5F P
3L [ ]
25+ °
ok [ ]
‘ ‘ ‘ ‘ ‘ ‘ s>l 1.5*...f. ‘ ‘ ‘ Ly
1 15 2 3 5 7 10 X 107° 1074 1073 1072 107t 1
Resulting energy spectra Ey for Resulting energy influx (ko) for fixed
different values of mutual friction value Ek0 vs. gives r-dependence of
parameter I b in estimate (ko) = b(1 — o/)K3/2/A

Turbulent Energy Spectra in Superfluids 18/34



Turbulent Front Propagation
Helsinki 3He-B experiment and bottleneck scenario Q | model of propagating turbulent front [6]

tleneck scenario [3]

Eddy-wave Bottleneck scenario vs. LTL experiment

10

e Using the same estimate

Vi 4c , c 08
ﬁ_? b(-l—)(:l._(})\/;“y‘ﬂa}7 |

but with temperature dependent b(T), 0.6
(see insert), which accounts for the
bottleneck effect, one achieves a
reasonable description of the
temperature dependence of the front
velocity in the quantum turbulent 02
region, see green line ——=-

02 0.4 0.6
TIT,

V,/(QR)
o

04

0.0

Achieved agreement is an evidence that our model adequately
reflects main physical features of the front propagation in 3He-B in
laminar, quasi-classical turbulent and quantum-turbulent regimes.

Turbulent Energy Spectra in Superfluids 19/34



Manchester spi
Differential r
Bottleneck ene

Manchester 4He experiment and theory of bottleneck spectra

Manchester cube (4.5cm)® spin-down “He experiment
Measuring the time-decay of the vortex line density by negative-ion scattering

@ T

1 Cartoon of the vortex configurations 1.

(a) Regular array of vortices at 2 =const.;

(b) Immediately after stopping rotation; Walmsley, Golov, Hall, Levchenko and
(c) Homogeneous turb.: Qt ~ 30 + 300; Vinen,
(d) Aimost decayed turbulence: Qt > 103.  PRL, 99, 265302 (2007)

Shaded areas indicate the paths of probe
ions when sampling the vortex density.

Turbulent Energy Spectra in Superfluids 20/34



Manchester spin-down “He experiment [8]
Measuring the time-decay of the vortex line density by negative-ion scattering

(a)l v
>
L
1 Cartoon of the vortex configurations 1 10° T

Vortex line density (LQ3/2) vs. (Qt) =. 10

“n

< 3 T=16K
dE(t) g1 ‘
T = {—:(t) = V/ <|w|2> s <|W|2> = (K/L)27 ;'o: % 0.05rad/s
2 2-1 10 0.15 rad/s 1
Turb. Energy E oce®? = E(t) o< (t —t.)* 1] 7 | Mmds

10'+ T ; T - )
= L(t) x ]_/[,..€ ,/(t _ t*)S] = 10" 10° 10' . 10° 10° 10
i3
Data on L(t) allows to measure effective viscosity v/

Turbulent Energy Spectra in Superfluids
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Manchester 4He experiment and theory of bottleneck spectra

Temperature dependence of the
Manchester spin-down experiment from Q = 1.5 rad/s in superfluid “He [8]

v'/x

Turbulent Enert

100 E T T T T T T T E
1 “eed § & 1
17 gt
107 ; ;
: @% A A Transverse |3
1%2. & A v v Axial ]
N X o ¢ Towed grid
10’ T T T T T T T
0.0 0.5 1.0 1.5 2.0

Spectra in Superfluids

T(K)
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Differential models for classical-quantum energy fluxes [4]

. Bottl g 1 effec ty [4]
Manchester 4He experiment and theory of bottleneck spectra Ofiene . s ity [4]

Differential model for classical=-quantum energy flux
Leiht-Nazarenko differential model for Classical hydrodynamic (HD) energy flux [3]

1 dF EFP
Ek :*g\/leFk d—kk’ F = X

Fx — 3-dimensional spectrum of turbulence.

Turbulent Energy Spectra in Superfluids 23/34



Manchester spin-down *He ex periment [8]
Differential models for classical-quantum energy fluxes [4]

. Bottl Kk acc ty [4]
Manchester 4He experiment and theory of bottleneck spectra BLLEILESCIT - vl

Differential model for classical=-quantum energy flux
Leiht-Nazarenko differential model for Classical hydrodynamic (HD) energy flux [3]

1 dF
ek = —= VKBF, =X, Fy =

8 dk

Fx — 3-dimensional spectrum of turbulence.
e Generic spectrum with a constant energy flux is the solution to
EqQ. ex = & = const:

W )

2/3 _
2ac T vzze [ (24/10)7° 2RKTHE,
R = [11k11/2 ()=

P T/rrp .
Low k region: K41 spectrum M0 o £2/3k —5/3,
Large k region: energy equipartition with an effective temperature T.

Turbulent Energy Spectra in Superfluids 23/34



Manchester spin-down #He experiment [8]
Differential models for classical-quantum energy fluxes [4]

Manchester 4He experiment and theory of bottleneck spectra ty [4]

[4]

L'vov-Nazarenko-Rudenko [4] differential model for quantum Kelvin-wave energy flux

5 (k)P (k) dEkw(k)

ekw(k) = =55 7 dk

Turbulent Energy Spectra in Superfluids 24134



Manchester spin-down 4He experiment [8]
Differential models for classical-quantum energy fluxes [4]

. Bottl acc 1 effectiv ty [4]
Manchester 4He experiment and theory of bottleneck spectra otieneck ene e erect y[4

Differential model for classical=-quantum energy flux [4]
L'vov-Nazarenko-Rudenko [4] differential model for quantum Kelvin-wave energy flux

K 5 (k€)8&kw (k) dEkw(k)
ekw(k) = =55 7 dk

e Equatione,, (k) = ¢ = const has the solution

k NkT € T \511/5 /\(”75/48)1/5 k=773,
stk = [T+ (5) ] =

T/ﬂ'p .

Low k region:  Kozik-Swistunov spectrum [9] of Kelvin waves (KW),
Large k region: equilibrium Rayleigh-Jeans spectrum.

Turbulent Energy Spectra in Superfluids 24134



Manchester spin-down 4He experiment [8]
Differential models for classical-quantum energy fluxes [4]
Bottleneck energy accumule nd effectiv ty [4]

Manchester 4He experiment and theory of bottleneck spectra _ L
Er L at finite tem) res

Differential model for classical=-quantum energy flux
Unified model for the eddy-wave total energy flux: Basic ideas

e Fluid motion is approximated as a mixture of “pure” HD and KW
motions, with the portions of the energy density g(k, ¢) & 1 — g(k, ¢):

1, késmall,
EP =649, &V=501-9), g(k,ﬂ)z{o k¢ large .

Turbulent Energy Spectra in Superfluids 25/34



Manchester spin-down 4He experiment [8]
Differential models for classical-quantum energy fluxes [4]
Bottleneck energy accumule nd effectiv ty [4]

Manchester 4He experiment and theory of bottleneck spectra _ L
Er L at finite tem)

Differential model for classical=-quantum energy flux
Unified model for the eddy-wave total energy flux: Basic ideas

e Fluid motion is approximated as a mixture of “pure” HD and KW
motions, with the portions of the energy density g(k, ¢) & 1 — g(k, ¢):

1, késmall,
EP =649, &V=501-9), g(k,ﬂ)z{o k¢ large .

¢ To find g(dk, ¢) we define here HD and KW energies via velocities
of k-bent, ¢-separated parallel vortex lines v i (r)

& =&P /dr Zvlk ‘27 gEW:%/er’vjyk(r)’Z
j

Turbulent Energy Spectra in Superfluids 25/34




“4He experiment [8
r classical-quantun fluxes [4]
cumulation ] eff sity [4]

Manchester 4He experiment and theory of bottleneck spectra finite te

Differential model for classical=-quantum energy flux
Unified model for the eddy-wave total energy flux: Basic ideas

e Fluid motion is approximated as a mixture of “pure” HD and KW
motions, with the portions of the energy density g(k, ¢) & 1 — g(k, ¢):

1, késmall,
EP =649, &V=501-9), g(k,ﬂ)z{o k¢ large .

¢ To find g(dk, ¢) we define here HD and KW energies via velocities
of k-bent, ¢-separated parallel vortex lines v i (r)

& =&P /dr Zvlk ‘27 gEW:%/er’vjyk(r)’Z
j

After cumbersome calculations and controlled approximations this
finally gives analytical formula for the blending function, that depends
ONLY onx =k /¢

g(x) = go[0.32 In(A + 7.5)x], go(x) = [1 + x2exp(x) - '

47(1 4+ x)

Turbulent Energy Spectra in Superfluids 25/34



Manchester spin-down 4He experiment [8]
Differential models for classical-quantum energy fluxes [4]
Bottleneck energy accumule nd effectiv ty [4]

Manchester 4He experiment and theory of bottleneck spectra _ L
Er L at finite tem) res

Differential model for classical=-quantum energy flux
Unified model for the eddy-wave total energy flux : Basic ideas

e The total energy flux over scales (k) = gup(K) + ekw(k),
where  gyp(k) = epp(k) + e85 and  Fxw(k) = exw(k) + 2 (k) .

Additional contributions [/ (k) and £l/3,(k), originating from influence
of KW on the HD-energy flux and vise versa, was found by some
additional arguments, such as form of thermodynamical equilibrium.
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Differential model for classical=-quantum energy flux
Unified model for the eddy-wave total energy flux : Basic ideas

e The total energy flux over scales (k) = gup(K) + ekw(k),
where  gyp(k) = epp(k) + e85 and  Fxw(k) = exw(k) + 2 (k) .

Additional contributions [/ (k) and £l/3,(k), originating from influence
of KW on the HD-energy flux and vise versa, was found by some
additional arguments, such as form of thermodynamical equilibrium.

All above reasoning finally give in the stationary case:

N8l 2[1 _ 4 4
gzg(k) — 7{% kllg(ké)g(k)+;(k£) k*[l/\5i(7k€)] E(k) }

This is an ordinary differential equation, that allows to find energy
spectrum £(k) (at given ¢ and ¢) in the entire region of scales:
classical HD, quantum KW and crossover scales k¢ ~ 1.
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C npeil

Eky 1k’
o

e(x) =

0.01 :
0.1 1 =kl 10 100

Black line — Spectrum £(k/) from solution of Eq. (LNR) ¢(k¢) = ¢;
Dashed blue line — K41 HD energy spectrum Eyp(kf) o< k=5/3;
Dashed cyan line — general HD spectrum, including equilibrium o k?;
Dashed green line — Energy spectrum of Kelvin waves Eqw o k~7/5.
Vertical dashed lines — Left: energy crossover, Eyp(kl) = Exw(k?),
Right: flux crossover, cpp(k?) = exw(k?)
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Total energy spectra for different A
as the solutions of Eq. (LNR) £(k¢) = ¢ for self-consistent values of ¢: see next slide
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Energ ctra at finite temperatures

Self-consistent estimate of  and effective viscosity v’

Eg. (LNR) gives £(k) at fixed € and ¢,

related by: (k?/6%) = (|w|?) 7 : : : —
\ « Numerics
oo 6 ffffff Analytics
= 2/ k2g(k0)E(k) dk . sl i
0 °
« 44 b\‘ L
This allows to numerically determine ¢ %~ | I
and ¢ as a function of A, see black 5
dots on Fig. and the analytical fit: 21 I
14 - . b
v 8.65 e
€= — = . . . . .
103 + 45.8A +1.98A2° s 20 40 60 80 100

shown as red dashed line.
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Energ ctra at finite temper

Self-consistent estimate of  and effective viscosity v’

Eg. (LNR) gives £(k) at fixed € and ¢,

related by: (k?/6%) = (|w|?) 7 : : : —
\ « Numerics
oo 6 ffffff Analytics
= 2/ k2g(k0)E(k) dk . sl i
0 °
« 44 b\‘ L
This allows to numerically determine e ~ 1 [
and ¢ as a function of A, see black 5
dots on Fig. and the analytical fit: 21 I
14 - . b
v 8.65 e
6 = — = T T . . .
103 4 45.8A + 1.98A2° s 20 40 60 80 100

shown as red dashed line.
For “He value of A ~ 15 we got 1/, ~ 0.004 x, which is quite close
to Manchester spin-down experimental value v, ~ 0.003 x. Having
in mind that our model does not contain fitting parameters, we
consider this agreement as more than satisfactory.
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Energy spectra at finite temperatures

Energy spectra at finite temperatures:
LNR model for the energy balance equation at finite temperature:

At finite temperatures (« # 0) the energy balance equation includes:

e Large-scale (eddy-dominated) dissipation and
e dissipation due to Kelvin waves

aggi,t) + ag(kk) — _af,’(k,t){g(k 0/ (Jw]2) + sz{l _g(k ()}} -

Here LNR (ours) model for the energy flux reads:

(k) = {5y hrgkne) - S KR _okOFERT

x(f_k{g(k)[gf(kf) .- _l(gf(”)”, k=2,

Stationary (numerical) solutions of this equation (at A = 15) and
different « are as follows:
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Manchester 4He experiment and theory of bottleneck spectra

Energy spectra at finite temperatures:
Stationary (numerical) solutions the energy balance equation at finite temperature:
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Energy spectra at finite temperatures:
Temperature dependence of the effective viscosity:

i i i i ®
. Model
0.070+ . K
0.050+ |
x
>0.080] i
L
0020r 4 ]
0.015+ 1
Experiment
5x i0’4 0.601 0.602 0.605 0.610
(07

Turbulent Energy Spectra in Superfluids 32/34



-] in-a
ial models for cl.
Bottleneck ene cur

Manchester 4He experiment and theory of bottleneck spectra o
Energy spectra at finite temperatures

Summary and road ahead

¢ Achieved agreement with the Helsinki *He front-propagation and
Manchester “He spin-down experiments is an evidence that

Our theory adequately reflects main physical features of superfluid
3He and “He turbulence in laminar, quasi-classical turbulent,
guantum-turbulent and crossover regimes.
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Summary and road ahead

¢ Achieved agreement with the Helsinki *He front-propagation and
Manchester “He spin-down experiments is an evidence that

Our theory adequately reflects main physical features of superfluid
3He and “He turbulence in laminar, quasi-classical turbulent,
guantum-turbulent and crossover regimes.

e Our feeling is that

The model assumptions and approximations we made do not
essentially affect the resulting physical picture of superfluid
turbulence.
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Summary and road ahead

¢ Achieved agreement with the Helsinki *He front-propagation and
Manchester “He spin-down experiments is an evidence that

Our theory adequately reflects main physical features of superfluid
3He and “He turbulence in laminar, quasi-classical turbulent,
guantum-turbulent and crossover regimes.

e Our feeling is that

The model assumptions and approximations we made do not
essentially affect the resulting physical picture of superfluid
turbulence.

¢ The theory predicts not only the temperature dependence of v/ but
the Entire energy spectrum at zero and finite temperatures,
consisting (at T — 0) of: K41 HD energy spectrum with constant
energy flux oc k —%/3, HD equilibrium k2, a KW equilibrium ~ const.
and a KW-spectrum with constant energy flux, oc k ~7/5.
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Summary and road ahead

¢ Achieved agreement with the Helsinki *He front-propagation and
Manchester “He spin-down experiments is an evidence that

Our theory adequately reflects main physical features of superfluid
3He and “He turbulence in laminar, quasi-classical turbulent,
guantum-turbulent and crossover regimes.

e Our feeling is that

The model assumptions and approximations we made do not
essentially affect the resulting physical picture of superfluid
turbulence.

¢ The theory predicts not only the temperature dependence of v/ but
the Entire energy spectrum at zero and finite temperatures,
consisting (at T — 0) of: K41 HD energy spectrum with constant
energy flux oc k —%/3, HD equilibrium k2, a KW equilibrium ~ const.
and a KW-spectrum with constant energy flux, oc k ~7/5.

e Our very definite qualitative predictions call for
More detailed experimental and numerical study of the superfluid
turbulence, which, as we believe, will support our theory.
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