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The tangle can be chaotic (non-structured), 

or essentially polarized (Kolmogorov regime).

We will focus on the non-structured case.



BEC kinetics and superfluid turbulence: 

Kibble-Zurek-type picture with a distinct non-trivial mechanism 

Simulation of Gross-Pitaevskii equation.     N. Berloff and B. Svistunov, 2002

See recent experiment by Brian Anderson and collaborators, Nature 455, 948 (2008).



Vortex line reconnections generate Kelvin waves. 

Kelvin waves can, in principle, cascade down in the wavelength space, but…



Large and small parameters controlling kinetics 

of superfluid turbulence at T=0 
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Local induction: 

Amplitude 1
Wavelength

� Becomes progressively smaller 
down the cascadePure Kelvin-wave cascade: 

Kelvon-phonon interaction: “Non-relativistic” parameter; 
guarantees weakness of coupling 
to phonons



Conservation laws controlling kinetics of superfluid turbulence at T=0 

Energy conservation To a good approximation, energy scales as 

the vortex line length. 

Momentum conservation For a vortex ring, momentum scales as

the (algebraic) area.

Angular momentum conservation = conservation of the number of kelvons:

Kelvons cannot scatter inelastically

Integrability of the local-induction limit Suppression of kelvon scattering processes (!)



Absence of Feynman’s cascade

Feynman’s cascade is inconsistent with simultaneous conservation of 

energy and momentum.

. . . 



The role of self-reconnections

A self-reconnection produces a small ring, the ring gets re-absorbed by the tangle. 

What’s left behind are Kelvin waves!  

BVS, 1995



A smart model: Collapse supported cascade
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canonical variables:
momentum−x
coordinate−y

This model corresponds to the local induction approximation

(and thus is integrable) as long as the function is smooth. 

However, the time evolution naturally produces  discontinuities,

and these are qualitatively equivalent to self-crossings. 
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Pure Kelvin-wave cascade 
Kozik and Svistunov, 2003

AmplitudeSmall parameter  =  
Wavelength

1.  Kelvon is a good elementary excitation

Becomes progressively smaller down the cascade.

Kelvon Hamiltonian:

+kkk aaH ∑ += εkw + + ...

2.  Number of kelvons is conserved  (due to the rotational invariance)
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Kinetic equation 

Kinetics are driven by

three-kelvon elastic scattering:

dimensional analysis of the collision term    17 /5
kn k −∝

= +

5/6−∝kbk

kelvon occupation number

or for Kelvin wave amplitude (                     ):knb kk ∝

Non-trivial two-kelvon scattering is absent because of 1D
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External forces:

drain,  no source

Evolution picture:

a back-wave propagating from

large-wavenumber region towards

smaller wavenumbers transforms

into                  .nk ∝ k −3 nk ∝ k−17/5

17/5 Kozik and Svistunov, 2003
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Kelvin-wave cascade in the chaotic tangle

cutoff due to phonon emission
Vinen, 2000

Kozik and Svistunov, 2005

ln k

pure cascade (no reconnections)
Kivotides, Vassilicos, Samuels, and Barenghi, 2001 (simulation)

Vinen, Tsubota, and Mitani, 2003 (simulation)

Kozik and Svistunov, 2003 (kinetic theory, simulation)

(Circumstantial) experimental evidence:
Davis, Hendry, and McClintock, 2000
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assisted by local self-crossings
Svistunov, 1995 (theory)    

Tsubota, Araki, Nemirovskii, 2000 (simulation; note however, authors’ interpretation 
in terms of Feynman’s cascade)
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Emission of sound, and more…



What are phonons in the presence of vortices? 

To find the canonical variables, use the Lagrangian.

( ) ( ) ( )0r r rϕΦ = Φ +
G G G

( )0 0rΔΦ =
G

singular non-singular
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(away from a vortex) But how about the causality?
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Vortex – Phonon Lagrangian
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Vortex – phonon Hamiltonian
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Hamiltonian =

+ +...
Fetter, ‘64

conserves
1. momentum along z

2. angular  momentum along z
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Sound radiation by superfluid turbulence
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Scattering

Elastic scattering

Inelastic scattering

Fetter ‘64

Pitaevskii, ’58
Sonin, ’76
(see also 

Iordanskii)

+=

Fetter, ‘64 
Demircan, Ao, Niu, ‘95

pinned vortex
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correct result:

correct result

Kozik and Svistunov, 2005

Kozik and Svistunov, 2005



Conclusions

• Reasons for a physically rich Theory: Conserving quantities and small parameters

• Absence of Feynman’s cascade

• Self-reconnection supported range is inevitable.

•Theory of pure Kelvin wave cascade

•The Hamiltonian of vortex-phonon interaction: the answers for sound radiation by 
Kelvin wave cascade, and other vortex-phonon processes.


