

2023-3

Workshop on Topics in Quantum Turbulence

16 - 20 March 2009

Between the Kolmogorov and Kelvin-wave cascades

E. Kozik ETH Zurich Switzerland

Between the Kolmogorov and Kelvin-wave cascades

Evgeny Kozik (UMass, ETHZ)

Boris Svistunov (UMass)

k nightes sister for this on decreation during. No sa hairtai haar ahr of this to bay work th

Outline

<u>What do we learn from the decay of non-structured tangles?</u>
 bottleneck-like effect, Kelvin-wave cascades

 <u>Quasi-classical tangles in detail</u> Kolmogorov vs. Kelvin-wave cascade bottleneck proposal reconnection-driven crossover regime

Finite T effects

Scanning the cascade by mutual friction cutoff

Non-structured tangles at T=0: Decay Scenario overview

Nonlinear KW interactions are too weak to support the flux heta !

$\lambda < R_0$: "Bottleneck" accumulation of energy... ... until:

Non-structured tangles at T=0: overview

experiments:

J. Maurer and P. Tabeling, in superfluid He-4:

Classical Kolmogorov law at large scales $E(k) \sim \varepsilon^{2/3} k^{-5/3}$ classically (by "stirring")

When turbulence is generated

S. R. Stalp, L. Skrbek, and R. J. Donnelly, Phys. Rev. Lett. 82, 4831 (1999).

In simulations

C. Nore, M. Abid, and M.E. Brachet, Phys. Rev. Lett. 78, 3896 (1997).

T=0:

- D. I. Bradley, D. O. Clubb, S. N. Fisher, A. M. Gue'nault, R. P. Haley, C. J. Matthews, G. R. He-3: Pickett, V. Tsepelin, and K. Zaki, Phys. Rev. Lett. 96, 035301 (2006).
- P. M. Walmsley, A. I. Golov, H. E. Hall, A. A. Levchenko, and W. F. Vinen, He-4: Phys. Rev. Lett. 99, 265302 (2007).

Superfluid Turbulence Behaving Classically: general picture

The existence of the Richardson cascade in superfluids is not trivial !!!

Anti-bottleneck???

Something must be happening before we reach the scale l !!!

Superfluid Turbulence Behaving Classically: Classical to Quantized crossover

Kozik and Svistunov, 2007

Kolmogorov vs. quantized regime:

Competition between
$$v^{SI}$$
 and v^{I} ! $v^{SI} \sim \Lambda \kappa / r$ $N_{r} v^{I} \sim N_{r} \kappa / r$ number of lines in
eddy of size r

$$\Lambda = \ln(l_0 / a_0) >> 1$$
~ 15 in He-4

Crossover scale:

$$r_0 \sim \Lambda^{1/2} l_0$$

At the scale r_0 :

The controversy!

An objection by L'vov, Nazaranko, and Rudenko:

PRB 76, 024520 (2007)

Bundle reconnections as seen by L'vov, *et al.:*

However, in simulations:

Alamri, Youd, and Barenghi, 2008

continues self-similarly with the spectrum

$$b_k \sim r_0^{-1} k^{-2}$$

in the range of scales

$$\lambda_{\rm b} \sim \Lambda^{1/4} l_0 \quad << \quad \lambda \quad << \quad r_0$$

At the scale $\lambda_{\rm b} \sim \Lambda^{1/4} l_0$, $b_k \sim l_0 \to$ the notion of bundles looses meaning

Reconnections of nearest-neighbor lines at small angles:

Reconnections at $\lambda_{\rm b}$ lead to **energy build up** with the spectrum

$$b_k \sim l_0 (\lambda_b k)^{-1/2} \qquad b_k k \propto k^{1/2}$$

within the range
$$\lambda_{\rm c} \sim l_0 / \Lambda^{1/4} \ll \lambda \ll \lambda_{\rm b}$$

At the scale $\lambda_{\rm c}$, $b_k \sim \lambda_c \rightarrow$ self-reconnections take over the energy flux

Spectrum of Kelvin waves in the quantized regime:

Key parameter – mutual friction coefficient $\alpha = \alpha(T) \propto T^5$, $T \rightarrow 0$

Kelvin waves decay due to the mutual friction:

$$b_k \sim -\alpha \,\omega_k \, b_k \qquad \qquad \omega_k = (\kappa/4\pi)\Lambda k^2$$

Dissipative energy flux (per unit line length):

Fitting experimental data, extracting the Kelvin-Wave spectrum

Conclusions

• A theoretical picture of the decay of Quasi-classical turbulence seems to emerge.

• The qualitative agreement between the theory and experiments is very promising

• Next steps: numerics (!), dissipation in 3He, rotating turbulence, calorimetry, (plausibly) Kelvin-wave spectroscopy, etc.