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1. Motivation to study dynamics of homogeneous turbulence in the T = 0 limit 

2. Main achievements of past (1955-2000)

3. Manchester results (2006-2009)

The scope of this talk: evolution/dissipation of vortices and their tangles
in as homogeneous and steady conditions as possible – in 4He at T < 1 K
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Part 1. QT  - turbulence in SF. In superfluid component, it is a tangle of quantized vortices. 
Their discrete nature makes dynamics at quantum scales unusual. 

We are interested in either T = 0 or T < 1 K (depleted, non-turbulent normal component)
One-fluid turbulence with a broad range of scales – from classical to quantum. 

There are three mainstream types of turbulence:
classical (hydrodynamic) turbulence, magnetodynamic turbulence, wave turbulence. 

QT is not a simplification of classical turbulence. 
We believe it is a special type that can (if you prepare it so) look like classical turbulence 

at a limited range of scales
but should be very different at quantum scales (where it is more like wave turbulence).

Hence, there are plenty of new physics, especially at short- and meso-scales. 
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Quantum Turbulence (QT) at T = 0: purely superfluid component, no normal component. 
QT = dynamical tangle of quantized vortices: a huge range of lengthscales (dissipation at ~ 3 nm).

Take a tangle of average length L (typical intervortex distance l = L-1/2 ~ 0.1 – 1 mm):

if vortices are random, then no flow on scales > l ,

if locally aligned, then there is flow on large scale.

On scales >> l, coarse-grained description is that of classical fluids: 
(random) (aligned)

d dissipation
k

l = L-1/2Quasiclassical Quantum

Kolmogorov Kelvin waves0.03 - 3 mm4.5 cm λ ~ 3 nm
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Simulations by Tsubota, Araki, Nemirovskii (PRB 2000)T = 1.6 K T = 0



Topics on Quantum Turbulence, Trieste, 16 March 2009

Energy spectra for different QT

Depending on pumping lengthscale, and on geometry and boundary conditions, we can have: 

1. Ultra-quantum (a.k.a. “random”, “Vinen”) turbulence. 
Free decay: E(t) ~ L(t) ~ t -1

2. Quasi-classical (“Kolmogorov”) homogeneous isotropic
turbulence (HIT). Free decay: E(t) ~ t -2 , L(t) ~ t -3/2

3. Quasi-classical rotating turbulence. 
Free decay (approximately): E(t) ~ t -1 , L(t) ~ t -1

k

Ek

l -1

k

Ek

l -1d -1

k

Ek

l -1d -1

General assumption: dE/dt = - ν(κL)2
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Some questions to be answered experimentally: 

- Is it true QT can behave classically at T = 0 or at higher T?

- Is it true the dissipation is through phonon emission at short length scales, at least in 4He? 
If yes, how will large-scale energy reach those short length scales? 
What type of inertial cascade is relevant: non-linear Kelvin waves, self-reconnections, etc.?

- Is the dissipation rate different for different spectra?

- Can one study quantum cascade on individual vortex lines (either straight lines or rings), 
perturbed either locally or by interaction with other lines? 

At T < 1 K, it would be handy to be able to apply force to vortex lines and to detect their motion
(injected ions seem to be the only available tool for 4He). 
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Injected ions were used successfully to investigate vortices at all temperatures 0 < T < 1.8 K
(unlike another technique, second sound, only useful at T > 1 K)

Injected ions (mainly, electron bubbles) were used to detect the presence of vortices: 

Careri et al., Nuovo Cimento 18, 957 (1960) (turbulence detected by ions)
Careri et al., Phys. Lett. 1, 61 (1962), Ions in Rotating Lilquid Helium II. 

Recent review on injected ions: Borghesani, A. F. Ions and Electrons in Liquid Helium. 
Oxford University Press 2007.

Part 2. Let's quickly revise important relevant steps for QT in 4He

Quantized vortices and QT predicted (Feynman 1955)
QT discovered  in rotating helium and counterflow experiments (T > 1 K)
(Hall and Vinen 1956, Vinen 1957)
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Negative ion: bare electron in a bubble (Atkins 1959) :
p 0 bar 25 bar 
R- 17 Å 12 Å
m- 243 mHe 87 mHe (Ellis, McClintock 1982)

Positive ion: cluster ion (“snowball”) (Ferrell 1957) : 
p 0 bar 25 bar 
R+ 7 Å 9 Å
m+ ~30 mHe ~50 mHe

Injected ions: structure

Ions - spherical probe particles that can be pulled by external force.

Proved extremely useful for studies of excitations in bulk He and vortices. 

By changing pressure and species, one can cover R = 7–17 Å, m/mHe= 30-240. 
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Ion-ring complexes: 

Experiment: Rayfield and Reif (1964), Rayfield (1968), Careri et al.(1065), Bruschi et al.(1966) 
McClintock, Bowley, Nancolas, Stamp, Moss (1980, 1982, 1985)
Theory for Vc: C.M.Muirhead, W.F.Vinen, R.J.Donnelly, Phil. Trans. R. Soc. A311, 433 (1984). 

Recent simulations:
T.Winiecki and C.S.Adams, Europhys. Lett. 52, 257 (2000)
Berloff abd Roberts (2000)
Berloff and Youd, PRL 99, 145301 (2007)

Proper E-v relations:
Roberts and Donnelly, Phys. Lett. 31A, 137 (1970) 
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Injected ions were used to create vortex rings, tag them and explore their dynamics 

at small fields and all T < 1 K.  (Rayfield and Reif, 1964)

Proper relations:
Roberts and Donnelly, Phys. Lett. 31A, 137 (1970). 
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Drag force on charged vortex rings at T < 1.4 K.  (Rayfield, Reif, Careri, Mazzoldi et al.)

Careri, Cunsolo, Mazzoldi, Santini, PRL 15, 392 (1965) 
Bruschi, Maravigla, Mazzoldi, PR 143, 143 (1966)
Rayfield, PR 168, 222 (1968).
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Ring’s shape under a point force. Simulations for E = 105 V/cm
Samuels and Donnelly, PRL 67, 2505 (1991). 
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Charged vortex rings were used to detect presence of vortices

Schwarz, Donnelly, Phys. Rev. Lett. 17, 1088 (1966) Quantized Vortex Rings in Rotating Helium II
Schwarz, Phys. Rev. 165, 323 (1968) (T = 0.3 K)
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Vibrating structures were used to pump liquid helium through an orifice, 
charged vortex rings used to detect the produced vortices. 
Emission of individual rings is detected as well as of their tangles. 
Tangle's decay within seconds observed. 

G. Gamota, Phys. Rev. Lett. 31, 517 (1973).
Experiment with an array of vibrating orifices (Nuclepore membrane, orifices diameters 
5 mkm, resonance frequency 1.17 kHz) at 0.3 - 0.5 K to generate a beam of 
monoenergetic vortex rings of diameter 1.7 - 3.2 mkm (decreasing as the flow drive was 
increased) and detect them by a transverse beam of charged vortex rings

Eventually, vibrating sphere was used by Schoepe et al. (90s), 
and vibrating grid to generate and ions to detect QT were used (McClintock et al. 2000).

Observation of vortex tangles leaking from the ion 
emission region and decaying within a minute 
(McClintock et al.  ~ 1974 - 1985)
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Wind tunnels can be built using fountain-effect 
pumps (see further publication B. M. GUENIN 
and G. B. HESS Physica 1Ol B (1980) 285
and (two) bellows – like the one used by 
Saundry and Bozler with superfluid 3He!
"Breakdown of 3He-A Superflow in Low 
Magnetic Fields," P.D. Saundry, M.R. Thoman, 
L.J. Friedman, C.M. Gould, and H.M. Bozler, 
J. Low Temp. Phys. 86, 401 (1992). 

Journal of Low Temperature Physics, 33, 243 (1978)
Observations of Quantized Vorticit Generated
Superfluid 4He Flow Through 2mkm-Diameter
Orifices in Helium II
B. M. Guenin and G. B. Hess

Wind tunnels (flow channels) were used to pump liquid helium through an orifice, 
charged vortex rings used to detect the produced vortices. 
Emission of individual rings is detected as well as of their tangles. 
Tangle's decay within seconds observed. 
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Ion interaction with vortices, transport along them, emission of Kelvin waves 
Role of rotons, phonons, 3He impurities (Glaberson et al. mid 70-s)

Ions used to detect/image presence of vortex arrays at rotation,
and of their stability (Packard et al. 70-s)
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Part 3. In what follows, I will talk about our experiments in Manchester in 2006-2009.

Plan: 

1. Decay of turbulence created mechanically in a large container: L(t) ~ t -3/2. 

2. Use of ions to create charged individual rings or tangles. 

3. Turbulence in rotating frame: decay L(t), etc.  



Our contribution

Experimental challenges were:

1. How to generate quasiclassical turbulence at T < 1 K?
Impulsive spin-down of a cubic container is a way to stir the liquid.

This technique has been widely used for classical turbulence (e.g. van Heijst, et al. 1989). 
At T > 1 K, turbulence upon spin-down was observed by Hall&Vinen 1956, Lane&Reppy 1965.

2. How to ensure that turbulence is nearly homogeneous and isotropic?
Use large container (d >> l); sample turbulence in its centre far from walls.

3. How to detect turbulence at T < 1 K?
Shoot a cloud of ions through and measure their loss proportional to L. 
Charged vortex rings (R ~ 1 μm) are very sensitive probes at T < 0.8 K !

d dissipation
k

l = L-1/2Quasiclassical Quantum

Kolmogorov Kelvin waves0.03 - 3 mm4.5 cm λ ~ 3 nm



Horizontal vs. vertical direction
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Scaling with Angular Velocity
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Low vs. High Temperature: horizontal
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Walmsley, Golov, Hall, Levchenko, and Vinen, PRL 99, 265302 (2007). 



Followed by:
Skrbek, Niemela, Donnelly, PRL 2000;
Skrbek and Stalp, Phys. Fluids 2000;
Stalp, Niemela, Vinen, Donnelly, Phys Fluids 2002;
Niemela, Sreenivasan, and Donnelly, JLTP 2005. 

Model for  the free decay of quasi-classical homogeneous 
turbulence with saturated energy-containing length 
(scale of largest eddies limited by the container size d):
L(t) ~ t -3/2



Spin-down to rest (purely classical model)
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Effective viscosities for two types of HIT
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Some questions regarding interpretation still remain (k1 = 2π/d at all T ? Role of rotation? 
Non-Kolmogorov spectrum?). Further experiments (and numericals) should clarify the situation.

L(t) = (3C)3/2κ-1k1
-1ν-1/2t-3/2

where C ≈ 1.5 and k1 ≈ 2π/d.  



Diffusion model (no bulk dissipation)

arXiv:09.02.3720v1, 21 Feb. 2009

Tsubota, Araki, Vinen (2003)

An alternative model, hardly applicable to our case 
as it considers neither classical eddies nor bulk dissipation  
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Low vs. High Temperatures
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Effective viscosities for two types of HIT
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Simulations of non-structured tangles: 
Tsubota, Araki, Nemirovskii (2000): ν ~ 0.06 κ (frequent reconnections)
Leadbeater, Samuels, Barenghi, Adams (2003): ν ~ 0.001 κ (no reconnections)

L(t) ≈ 1.2 ν -1t -1

L(t) = (3C)3/2κ-1k1
-1ν-1/2t-3/2

where C ≈ 1.5 and k1 ≈ 2π/d.  



Energy spectra (Q-Cl homogeneous isotropic turbulence)
L’vov, Nazarenko, Rudenko, 2007-2008
(bottleneck, pile-up of vorticity at mesosclaes ~ l) 

Kozik and Svistunov, 2007-2008
(reconnections, fractalization, 
build-up of vorticity at mesoscales ~ l)

I.e. at T = 0, it is expected to have excess L at scales ~ l. 
Unlike classical techniques (which are usually sensitive to velocity at large scales),
For QT, the convenient observable is L (vorticity <ω2> ~ (κL)2). 



In strong field E, injected ions can be transported by two different means
(see talk by Paul Walmsley)
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Large scale motion of fluid

Model: electroconvection
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Tangle Growth & Decay in Centre of Cell
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We can probe the growth of the tangle by first sending a pulse from the left tip and 
then use a pulse from the bottom tip to probe the vortex line density in the centre of 
the cell.

The tangle grows and fills the whole cell. L ~ t -1, agrees with other measurements.
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Turbulence in rotation

We currently study turbulence decay at continuous rotation. This can help 
quantify the importance of tangle polarization, as well as to attempt a 
realization of quasi-2d turbulence and an inverse cascade in it.

E.g. rotating classical turbulence: Morize et al. Phys. Fluids 18, 065107 (2006).

(illustrations of flow field in a stationary (left) and rotating (right) frame 
copied from http://www.ipp.mpg.de/~wcm/projects/rota/rot_hd.html)



Results: Spin-downs, all with ΔΩ = -0.15 rad/s
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Spin-down: Ω1 → Ω2

Ω

Rotate at Ω1 for 10 minutes then at t = 0, spin-down to Ω2.
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QT in rotation: purely classical model
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Conclusions

We used charged vortex rings to probe turbulence in superfluid 4He in the T = 0 limit.

The decay of different types of turbulence, generated by injected ions or spin-down, studied.

Ultraquantum tangles decay as L ~ t -1. This is consistent with Vinen’s equation, E ~ t -1, and the 
effective kinematic viscosity ν =  0.1κ. 

Quasiclassical tangles decay as L ~ t -3/2. This is consistent with a developed Kolmogorov
cascade truncated at cell size, E ~ t -2. The effective kinematic viscosity ν = 0.003κ. 

In T = 0 limit, ν(ultraquantum) / ν(quasiclassical) ~ 30. This implies that, at the same overall L, 
structured tangles feed into the quantum cascade 30 times less energy than random ones.

Excitation of Kelvin waves on charged vortex rings at high fields observed. 

A charged tangle in external field keeps accelerating the surrounding superfluid forward.  

At continuous ion injection, switching between two steady regimes observed.

In rotating frame, turbulence possesses less vorticity, in agreement with classical expectations. 




