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Introduction and scienific background

 |dea that inhomogeneous vortex tangle evolves In
a diffusive-like manner appeared pretty long ago.
Thus, In 1988 van Beelen & Geurst, who
observed the regions of high vortex line densities
L(r,t) --- ""plugs’* in the channel with the
counterflowing He 11, proposed that this
phenomenon appeared due to diffusion of
guantity L(r,t).



Numerical lllustration (M. Tsubota, T. Araki and W.F. Vinen, (2003)).

Authors determined the diffusion constant to be equal to 0.1k




Applications to the decay problem?

» Especial interest to the diffusion processes
arises in context of the problem of decay of the
vortex tangle at zero temperature.

« Mechanism of the diffusion-like spread of the
vortex tangle with its subsequent degeneration
usually is usually ignored, just grounding on the
value 0.1k for the diffusion constant. This small
value of thediffusion coefficient does not lead to
correct time of decay.



Purpose of work

* In the present paper we develop the theory describing the
evolution of an inhomogeneous vortex tangle on the bases of
Kinetics of the merging and breaking down vortex loops. We
showed that evolution of a weakly inhomogeneous vortex
tangle obeys the diffusion equation with the coefficient equal to
about 2.2 kK, which exceeds approximately twentyfold as large
the value obtained in paper. We present arguments that the
diffusion constant would be underestimated in \cite{Tsub-diff}
due to especial procedure used by the authors. We used the
diffusion equation to describe the decay of the vortex tangle at
very low temperature. Comparison with the recent experiments
on decay of the superfluid turbulence \cite{Pickett-

2006}, \cite{Golov07} is made.



Statement of problem: 1

Vortex loops composing the vortex tangle can move as
a whole with some drift velocity V_{L} depending on
their structure and their length. The flux of the line
length, energy, momentum etc., realized by the
moving vortex loops takes a place. Situation here is
exactly the same as in usual kinetic theory with the
difference that the "carriers” of length are not point
particles but are are extended objects (vortex loops),
which possess an infinite number of degrees of
freedom with very involved dynamics. In addition,
while collision (or self-intersection) of elements of
filaments the reconnection of the lines occurs, and
loops either merge or split, losing their individuality
and turning into other loops.






Statement of problem. 2

Thus, the number of objects is not fixed and the full statement
of this problem requires some analog of the secondary
quantization method for extended object, or the string field
theory, the problem of incredible complexity. Clearly, this
problem can be hardly resolved in the nearest future. Some
approach crucially reducing the number of degrees of freedom
IS required.

We offer to fulfill investigation basing on supposition that
vortex loops have the Brownian structure (see Nemirovskii,
PRB, (1998), PRL (2006) PRB, (2008) ).

In fact this approach is not very new. For instance, in
famous books by Kleinert there is described how the stochastic
one-dimensional singularities (like linear dislocations, cosmic
strings, polymer chains etc) can be considered as a set of
Brownian loops.



Random walking (Brownian) structure

* The structure of any loop is determined by numerous
previous reconnections. Therefore any loop consists of
small parts which "remember” previous collision. These
parts are uncorrelated since deterministic Kelvin wave
signals do not have a time to propagate far enough.
Therefore loop has a structure of random walk (like

polymer chain).



Gaussian model of vortex loop

Main mathematical tool to descibe random walk is the Wiener distribution.
We use it in form, which allows to take into account possible anisotropy and

finite curvature.
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Here A,5(¢,¢") 1s Mexican-hat like function width &, The average loop can

be imagine as consisting of many arches with mean radius of curvature equal
¢ randomly (but smoothly) connected to each other. Quantity & is important
parameter of the approach. It plays a role of the "elementary step" in the
theory of polymer. It is low cut-of, theory does not describe scales smaller
then £,.Beeing a Gaussian function the Wiener distribution allows readily to

calculate any average functional (A({s(¢,£)})}.



Statement of problem. 3

Thus, besides of the structure parameters the Brownian loops have
only degree of freedom, namely length I.

This conception allows to work with the distribution function n(l,t) of the
density of a loop in the space of their lengths (number of loops of given
length per unit volume). The distribution function n(l,t) obeys the Boltzmann
type "kinetic" equation. Study of exact solution to this "kinetic" equation
allowed to develop a theory of superfluid turbulence, which quantitatively
describes main features of this phenomenon (see Nemirovskii, PRL (2006)
PRB, (2008) ).

This approach turns to be useful in study the inhomogeneous vortex tangle.
In this case we have to impose the coordinate dependence on the
distribution function, that is to put n(l,r,t) and to modify "kinetic" equation with
regard to inhomogeneous situation.

In this work we restrict ourselves to the a bit more modest problem of
evolution of the vortex line density. The corresponding theory can be
develop in spirit of classical kinetic theory with the difference that the
transport processes are executed with the extended objects - vortex loops.
Accordingly the key questions is to evaluate the drift velocity V_{L} and the
free path for the loop of size |.



The Dirift Velocity

The drift velocity V7, 1s defined via an averaged quadratic velocity of the line
elements (simple average velocity vanishes due to symmetry)
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Here (', 1s the constant of order of unity. Velocity V; can be also estimated from
the following qualitative consideration. Consequently considering the average
loop as consisting of arches with the mean radius of curvature equal to £y ran-
domly (but smoothly) connected to each other, we take its velocity as resulting
velocity of all arches composing the loop. Since the arches randomly connected
to each other, and have the velocity as for rings, Vyrcn = 8/&, (directed along
the normal), the resulting is averaged velocity is the "random walking" average,
1

Vi = —/nB/&,. where n ~ /£, is a number of arches. Both ways lead to result

that V; is estimated as V; ~ 3/4/1&,.



Collision of loops

The drift motion 1s realized until the loop collides with other loops with
subsequent formation ot larger loop. Number of collision Pe,(dt) per small
interval dt can be estimated from the "kinetic equation"” for the distribution
function n(!) of density of loops 1n space of their lengths [ . The rate of change

of density n(l) due to colhsions 1=

on(l. t) y o
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The scattering cross-section A(ly.[, [3) deseribes the rate (number of events per

unit volume and unmit time) of collision of two loops with lengths [ and [» and

torming the loop of length [ +1 = Is.
A(ly, 1 1a) = b Vila L

Here b,, 15 numerical factor approximately equal to b, =~ 0.2 and V; 15 the
characteristic velocity of the hine elements.



Free path

The probability Pc,;(dt) for loop to collide with other loops (and reconnect)
in a small interval dt is:
P(_‘jDE [dt:l = Adt.

Calculation of the collision probability A we perform with use of the distri-
bution tunction n(l) = (']—5/2

| | [
50

In usual way we conclude that the probability P(x) for the loop of length I
to fly the time ¢ without collision 1s

2.5

Plz) =2lLexp(—2lb L) = Lfree ~ i



Flux through area element
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Figure 2: The net flux of length through the small area element placed inx =0
and orientated perpendicularly to axis x



Evolution of the vortex line density
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There are possible two variants. a).Quantity £,(x) is independent variable (e.g.
due to the own vortex line dynamics, or we inject the loops of definite size).
b).Mean curvature ,(x) and £(z) are not independent, there is correspondence

between them (Schwarz, PRB, 1988, Nemirovskii, PRL, 2006)

€0~ 0.27L7Y/2,

Tthe rate of change of quantity £ obeys to the diffusion type equation

% = D,V2L ~ 2.26V20



Boundary conditions. 1. Smearing of tangle.

1. Smearing of tangle. Let us consider a first the case when vortex
tangle 15 placed in some restricted domain of superfluid helium. Let us consider
also that vortex line density 1s not too high. this allows the relatively large loop
to be radiated. They move slowly. the smaller loop run down larger loop, then
collide and reconnect with them. So outside of in1tial domain the well developed
tangle 15 formed. This. secondary, vortex tangle smoothly jomn with the mitial
tangle 1nside domain. This imples that in this case no boundary condifions
are required at all, and evolution of the vortex line density obeys equation 1n
infinite space with the mmitial distribution £(x.0) inside domain.




Boundary conditions. 2. Radiation of loops.

2. Radiation of loops. The second situation can be realized when the
racliated vortex loops run away and does not influence the mitial vortex tangle.
[t can happen, for mstance 1f the imitial tangle 15 very dense. so 1t can radiate
only very small loop, which rapidly propagate. These loops run away without
interaction with each other and with 1mtial tangle where they are rachated
from. Other hypothetical variant 1s 1if there 1s some trap on the boundary
absorbing vortex loops. Thus vortex loops escape from the mitial domain do not
back influencing original vortex tangle. In both case the boundary conditions
can be found assuming that diffusive like flux of length near boundary J, =
—D,V L[z, 1) coincides with the flux executed by vortex loops radiated through
the (right) boundary J(xy, t)

K




Boundary conditions. 3. Solid walls.

3. Solid walls. Vortices can annihilate on the solid wall, they can undergo
pinning and depinning rachating vortices back to the bulk of hehum. Surely
this requires a special treatment which goes beyond the scope of the work.
The one possible way 1s to consider the solid wall as a "partial" trap. which
catches the loops and re-emit part ot them back into the volume. Formally
1t can be written as previous condition with additional term describing back
flux. Without detailled analysis 1t can be supposed that this flux 1s proportional
to the vortex line density on the boundary L(xp,t) with the coefficient Ciyoer
depending on dynamics of line on the wall (jumps between pinning sites, Kelvin
waves dynamics near the wall ete.). Thus the boundary condition in this case
can be written 1n form.
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Tsubota’s group numerical experiment. I.

As it was discussed in the Introduction, the contribution of the diffusion (or
radiation of loops) is ignored, mainly due to smallness of the diffusion constant
offered in paper Tsubota et al. Let us expect this work more thoroughly. In paper
there was studied one-dimensional evolution (spacial spreading) of the vortex
tangle concentrated initially in some domain of space and having there
nonuniform distribution. On the rest pictures the distribution of the VLD at
different moments of time is shown.To describe this evolution of the VLD it had
been supposed the quantity L(x,t) to obey the diffusion equation with the
additional term —

-X_2(K/21T)L2

in the right hand side. In turn this term was introduced to describe the decay of
the vortex tangle in early numerical simulation made Tsubota et al. Because of
this additional term contribution of diffusion to the whole decay would be
significantly underestimated. We would like to note that there was possible to
choose another reasoning, namely, to consider that decay of the vortex tangle in
both cited papers occurs mainly by the diffusion process (with the diffusion
coefficient calculated in our work). We calculated spacial -temporal evolution of
vortex tangle (under condition of numerical experiment by Tsubota et al.) with use
of our diffusion coefficientlt can be concluded that approach developed
satisfactory describes evolution of vortex tangle without any additional
supposition.
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Tsubota’s group numerical experiment. Il.
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Pickett's group experiment (2006)
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FIG. 5: Comparison of experimental data on the decay of
superfluid turbulence obtained in [8] (upper figure) and our
theoretical result (lower). We calculated temporal evolution
of the averaged vortex line density (for initial condition £ =
10% 1/em?) due to diffusion process described in the present
paper. The initial domain of high vortex line density was
created in the volume *He-B, so its diffusion like behavior
should satisfy the first type boundary condition. The straight
line in the lower figure exactly corresponds to line A in the
upper figure 5 (which was named by authors of [8] as "limiting
behavior™ ).



Golov’'s group experiment (2007)
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FIG. 6: Comparison of experimental data on the decay of
superfluid turbulence obtained in [9] (upper figure) and our
theoretical result (lower). We caleulated temporal evolu-
tion of the averaged vortex line density (for initial condition
£ = 10* 1/em?) due to diffusion process described in the
present paper. The superfluid turbulence in [9] was created
in the cubic container with solid boundaries. Therefore we
had chosen the third type boundary condition with the fit-
ting parameter Cpoer /= 0.9,

) 10°- “_Q=15radls
103_:_ e g B B -.':"::j-::? E
ol - o ad , 0_15 I'a.d-’lls ﬁ % 3 ]
\ § J- T & I
N 2 gttt ++-
* -] f i o -Et E%} "
\ 10— ++ 0.05rad/s *’%5? N
NN ] + A
\\\ ’ m&a .
— L . 10'- .I.T..zﬂrl.s.K.. : S SN
10 0100 500 1000 3000 1. 10 1 I{]'} “'}1 1 62 1 (I}B 10
i, s



Conclusion

In summary, the theory describing the evolution of
Inhomogeneous vortex tangle at zero temperature is developed
on the bases of kinetics of merging and splitting vortex loops.
By use of Gaussian model we calculated the flux of the vortex
line density L(x,t) in inhomogeneous vortex tangle and
demonstrate that under certain circumstances it satisfies to the
diffusion like equation with the coefficient equal approximately
to 2.2k. We use this equation to describe the decay of the
vortex tangle at very low temperature.

Good agreement with the recent experiments
on decay of the superfluid turbulence
convinced us that the “diffusion contribution”
Into solution of the problem on decay of the
vortex tangle is significant.



Thank You !




