

The Abdus Salam International Centre for Theoretical Physics

2023-14

Workshop on Topics in Quantum Turbulence

16 - 20 March 2009

Velocity Spectra from Various HeII Flows at Finite Temperature

P.E. Roche CRTBT-CNRS Grenoble France

www.neel.cnrs.fr

Velocity spectra from various He-II flows at finite temperature

3 experimental confirmations of Maurer & Tabeling 1998 paper

Institut Néel CNRS & Université J. Fourier Collaboration TSF UJF, INP, CNRS, CEA, ENSL

Main contributors

• "Chunk" turbulence experiment Institut Néel, CNRS/UJF

F. Gauthier (PhD), B. Chabaud, P.-E. Roche

- Grid and Wake experiments :
 - Institut Néel, CNRS/UJF :+ technical support :
 - SBT, CEA/UJF :+ technical support :
 - ENS-Lyon /UCB :
 - LEGI/UJF/INP :
 - CEA/Saclay :

- TSF collaboration
- **J. Salort** (PhD), **P.-E. R.**, P. Thibault A. Gerardin, G. Garde, C. Guttin,...
- **P. Diribarne**, **B. Rousset**, A. Girard M. Bon Mardion, A. Forgeas,...
- B. Castaing (PI), L. Chevillard
- Y. Gagne, C. Baudet
- B. Dubrulle, F. Daviaud
- Acknowledgement : T. Haruyama (KEK, Japan)
- Financial Support : ANR TSF till 2008.

Local investigation of superfluid turbulence, J. Maurer and P. Tabeling, EPL (1998)

Motivations

- So why spend time, effort and \in trying to confirm it ?
 - Our first pressure probe : developed to check another local probe
 - Maurer & Tabeling paper : Unconfirmed decade-old experiment ; unique flow and probe
 - Statistical analysis of velocity fluctuations in He-I vs. He-II

Parameters explored in the present study :

- Types of flow
 - ⇒ "chunk" turbulence + wake turbulence + grid turbulence
- Reynolds number
 - \Rightarrow estimated R_{λ} from 150 to 1400 (Maurer et Tabeling $R_{\lambda} \sim 1400$)
- Turbulence intensity v_{rms} / V_0
 - For 30 % turbulence intensity, based on classical turbulence estimation, the signal from a stagnation-pressure probe consists in :
 - the expected velocity contribution (~75% of total signal)
 - *a quadratic correction term* (~11%)
 - a static pressure term (~15%)
 - events with flow-probe angle of attack (yaw angle) exceeding 15°
 - \Rightarrow Turbulence intensity varied from 1.5% to 35%
- Pressurisation of flow
 - \Rightarrow to prevent bubbles in He-I

A word on probes

- Commercial piezo-resistive probes with nozzle of diameter $\Phi_e \sim 1 \text{ mm}$
- Space resolution : nozzle diameter Φ_e
- Useful Time resolution = min (Φ_e/V , f_{nozzle}) where f_{nozzle} is determined by
 - organ pipe resonance
 - orifice + cavity resonance (Helmoltz)
 - transmitting tube + cavity resonance
- Sensitivity : $\delta P \sim \delta(\rho . V^2/2)$
 - taking V~1 m/s , $\delta V \sim V_{rms} \sim 10\%.V$, $\rho \sim 145$ kg/m³ $\delta P_{rms} \sim 1$ Pa ~ 100 dB acoustic
 - typical microphone sensitivity

"Chunk" turbulence in a pipe

- High Re (Re ~ 10^6 in He-I)
- Fixed mean direction
- Turbulence intensity ~ 30 %

Spectra are compatible with -5/3 scaling over the 1 decade in the upper inertial range frequency

TSF : a pressurised He-I / He-II Loop with mass flow up to 700 g/s

Cooling power : 400W @ 1.8K Test sectionHeat exchanger : $\Phi=30 \text{ mm}$, L > 10 mBarber et Nichols centrifugal pump ($\Delta P=300 \text{ mbar}$)

Confined wake Turbulence

Confined wake Turbulence

Nearly overlapping spectra in He-I and He-II over ~ 2 decades of frequency

- very well known & very "clean" flow (isotropic,...)
- low turbulence intensity
 - -> fluctuation of stagnation pressure ~ fluctuations of velocity

Grid Turbulence (preliminary results) He-I

Grid Turbulence (preliminary results) He-I versus He-II

 \Rightarrow Similarity between the 2 spectra above and below T_{λ}

Grid Turbulence (preliminary results) He-II

Conclusions & Perspectives

- Maurer & Tabeling observation (= identical spectra above and below T_{λ}) is confirmed, in particular with :
 - $-\,$ a nearly pure velocity signal, thanks to a turbulence intensity < 2 %
 - various flows
- Short-term perspective (2009)
 - Repeat the Grid turbulence measurements with increased resolution and sensitivity
 - -> statistical analysis of intermittency

« Bad », « inefficient », « archaic », « ideologues », « partisans », « conservatives », « blind », « immobile », « refusing to face reality », « installed in the comfort of self-evaluation » « working in obsolete, archaic and rigid structures »,...

from Nicolas Sarkozy, Jan. 22nd 2009 public speech on French researchers and French research system