

The Abdus Salam International Centre for Theoretical Physics



2023-28

Workshop on Topics in Quantum Turbulence

16 - 20 March 2009

Vibrating Forks in 4He at Very Low Temperatures

R. Schanen University of Lancaster Dept. of Physics U.K.



# Vibrating Forks in Superfluid <sup>4</sup>He at very low temperatures



D.I. Bradley C. Lawson A.M. Guénault M.J. Fear S.N. Fisher

R.P. Haley G.R. Pickett R. Schanen V. Tsepelin L.A. Wheatland



# Outline

**Tuning Forks** 

Experimental Cell

Laminar to Turbulent Transition: Temperature and Pressure dependence

> Anomalous damping: Trapped vortices? (or dirt!)

New experimental cell

Preliminary results: Metastability

Summary



## **Quartz Tuning Forks**





- -Two identical resonators
- Driven in opposition of phase
- High quality factor
- Velocity measured as current
- No magnetic field required

- Different size, shape, electrode layout
- Contact: solder or epoxy

# **Experimental Cell**

LANCASTER UNIVERSITY DEPARTMENT OF PHYSICS







#### Measurements





Software:

- Frequency Scan
- Amplitude Scan
- Time tracking

- Typically  $f_0 = 32$  .770 kHz - In air at room temperature,  $\Delta f_2 = 5$ Hz - In vacuum at 5mK,  $\Delta f_2 = 50$  mHz,  $Q = 640\ 000$ 



### **Force vs Velocity**

- Calibration using the fork constant "a":

 $I = a \cdot \dot{x}$ 

 $F = a / 2 \cdot V$ 

*Height* . *Width* / *Drive* =  $a^2$  / (4m\*)

 $a = 12.10^{-6} \text{ C/m}$ 



M. Blažková, D. Schmoranzer, and L. Skrbek Phys. Rev. E 75, 025302 (R) (2007)



#### **Pressure dependence**





Clear onset of turbulencedNo Pressure dependence

#### **Temperature dependence**

7



ANCASTER. ERSITY

> - Thermal damping from  $\sim 100 \text{ mK}$

- Apparent increase in transition velocity



laminar term

- No temperature dependence of the critical velocity



# **Drag coefficient**

- Drag coefficient:

 $F = \frac{1}{2}C_D \rho A v^2$ 

- Inspired from M. Blažková<sup>(1)</sup> et al. :

We use a modified version

 $C_D = \frac{\alpha}{v} + \beta H(v - v_c) \frac{(v^2 - v_c^2)}{v^2} \left( \frac{(\frac{v_c}{v} - 1)^{1/2}}{(\frac{v_c}{v} - 1)^{1/2} + \epsilon} \right)$ 

- All data fit with  $\beta = 1$ ,  $\varepsilon = 10$ 

- Only  $\alpha$  is adjusted from the laminar part of the curve





### **Anomalous Damping**



Large increase in the damping
Spontaneous increase/decrease
Very slow process

- Cannot be started: large drive, mechanical noise uneffective
- Can be cleared using pressure pulse





### **Anomalous damping**





- Vortices attached to the fork? (or impurities)

- Kelvin waves emit vortex rings?

- Radiating power of 10 pW would give ~ 10 000 vortices
- Up and down amplitude sweeps shows same feature
- Slowly disappearing with time

#### Anomalous damping at high temperatures

LANCASTER

UNIVERSIT DEPARTMEN OF PHYSIC



- Presence of anomalies at high temperature masked by thermal damping





|                | $f_0$ | $f_0$ | $f_0$ | $f_0$ | $\Delta f_2$ | $\Delta f_2$ | $\Delta f_2$ | $\Delta f_2$ |
|----------------|-------|-------|-------|-------|--------------|--------------|--------------|--------------|
| 4K vacuum      | 32657 | 32355 | 32711 | 32706 | 0.08         | 0.05         | 0.05         | 0.06         |
| 4K liquid      | 31820 | 31547 | 31918 | 31884 | 11.4         | 12.2         | 20.4         | 25.3         |
| 7mK superfluid | 31722 | 31446 | 31828 | 31794 | 0.07         | 0.80         | 0.95         | 1.29         |

- Cross talking between C forks
- Vortices captured on B?



## Metastability

Fork A at 1Bar, 7mK



- Hysteresis
- Jumps in both directions
- Two critical velocities

Tracking Fork A: amplitude vs Time



- B at 4.5 cm/s: No Drop
- B at 5.1 cm/s: Drop after 30 s
- B at 5.3 cm/s: Drop after 2s



## Summary

- We observed that the onset of turbulences is independent from pressure
- We observed that the turbulent part of the drag coefficient is independent from temperature up to 1K
- There seem to be two critical velocities at the onset of turbulences?
- The metastable laminar state can be forced into the turbulent state
- Cross talk between forks and the anomalous damping still require more work