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Introduction I

The title of this review is misleading,  because we have no widely accepted 
theory of the generation of turbulence by a vibrating structure in a superfluid.
Why do people spend time on experiments on vibrating structures? One 
answer is that they are fairly easy to do, in comparison with the study of 
steady flow past an obstacle. But they are harder to interpret, as is the case 
with the corresponding experiments with classical fluids.  In classical fluids 
what is happening seems often to be very complicated,  and detailed 
theories are difficult to develop.  Virtually nothing would be known about the 
classical cases without the help of visualization.  In the superfluid case we 
have as yet no visualization;   all we have are experimental studies of the 
dependence of drag on velocity.

So how can we go about trying to understand the experimental results in the 
quantum case?  We must clarify what we are trying to explain.  We must ask 
what features of the drag versus velocity relation do we wish to understand?  

Here we encounter a difficulty:  we can identify what appears to be an 
important and significant feature in the drag curve for a particular structure,  
only to discover that that it is not reproducible in another structure, even 
when the two structures seem to be essentially identical.    



Introduction II

Here I shall made an admission.  I shall allow myself to be guided by features 
of the experimental results that are not always present.  You may object to 
this approach,  saying that I am choosing to accept experimental results that 
fit in to my preconceived ideas,  and to reject those that do not.  

However,  I shall take the view that significant features can appear if the 
conditions are favourable,  and that we should take advantage of these 
favourable conditions in guiding us towards a general understanding.  These 
is some danger in doing this,  but it seems to me that otherwise we can make 
no progress.  Of course,  I take the view also that we ought then to try to find 
out experimentally why conditions are favourable sometimes,  but not always. 
Indeed one important message emerges from my approach:  the need for 
more experiments,  especially more systematic experiments covering wide 
ranges of variable with different well-characterized structures.     



Classical dimensionless parameters

Steady flow is characterized by a single dimensionless parameter:  the 
Reynolds number                      U=characteristic velocity; D characteristic dimension;         

ν= kinematic viscosity
νDU=Re

Oscillating flows require two dimensionless numbers:  for example

• the Keulegan-Carpenter number a=amplitude of oscillation

• the Stokes number                                 ω=angular frequency
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The dimensionless drag and inertia coefficients 

As in the case of the corresponding classical experiments the force F on the 
oscillating structure can be written in terms of the velocity U as

dt
dUVCUUACF MD ρρ +=

2
1

A is the projected area of the structure;  V is its volume;  ρ is the total fluid density;

CD is the dimensionless “drag coefficient”;

CM is the dimensionless “inertia coefficient”,  which determines the added   
mmeffective mass.

Classical experiments are usually carried out with an imposed sinusoidal 
velocity ;  then we write( )tiUU ω−= exp

UVCiUUACF MD ωρρ +=
2
1

In experiments on superfluids there is usually an imposed sinusoidal force,  
but we shall assume that the same formula can be used.

Measurements of CM in superfluids often produce strange results,  which we 
shall ignore, pending more systematic experiments.



Observed drag coefficients in classical fluids

In the simplest cases this seems to have the form

( ) γωνα +=
UA
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where α is a dimensionless 
parameter depending on the 
shape of the structure;  

S is the surface area of the 
structure;    and γ ~ 1.

Studies in normal 4He with a 
vibrating fork support the 
simple formula.



Observed drag coefficients in superfluid 4He (Skrbek review)



Comments on the observed drag coefficients I

All have certain common features:
• A region at low velocities where CD ~ 1/U:  due to laminar flow of normal 

fluid or ballistic scattering of normal-fluid excitations or nuisance damping;  
with potential flow of the superfluid component.

• A sharp minimum,  interpreted as a sharp superfluid critical velocity

• A tendency for CD to level off to a constant value ≤ 1 at high velocities:  but 
often the data do not go to high enough velocities to be sure of the limiting 
behaviour at high velocity.

• A region between the superfluid critical velocity and the limiting high-
velocity behaviour where CD goes through a maximum.

• Some data show this maximum very clearly;  others do not. 

A potentially important feature that may or may not be present

• Whether the maximum does or does not exist seems not to be correlated 
with the type of structure.

Hints from the vibrating wires and grids at very low temps that there can be 
slightly increased dissipation even below the superfluid critical velocity



Comments on the observed drag coefficients II

Some evidence that the critical superfluid velocity is close to the velocity at 
which normal helium (ν ~ 10-8 m2s-1) starts to display a classical instability.
• Examination of this classical instability for a variety of  structures shows 

that it is associated with a critical Keulegan-Carpenter number that varies 
with the Stokes number as shown by the solid line,  if ν ~ 10-8 m2s-1.

• We see that  observed critical 
superfluid velocities fit this 
curve rather well.  

• Perhaps this is an accident.  
Later we speculate that it is not 
an accident,  and we shall 
discuss the possible 
significance of the value ν ~ 
10-8 m2s-1.

The observed frequency-dependence of the superfluid critical velocity?
• Is it ω1/2?  Above graph is consistent with its being close to (but not 

exactly) ω1/2 .  But perhaps not a universal prefactor.
Switching and hysteresis.

Wires   ↑
Bradley et al



General comments on the theory of vibrating structures in 4He

What are trying to explain?
• The existence,  magnitude and frequency-dependence of the superfluid

critical velocity.

• Equally importantly,  the form of the drag coefficient versus velocity at 
velocities exceeding this critical value.

Possible approaches

• Computer simulations:  difficult to follow through to the form of the drag 
coefficient if vortex density grows to a large value.  Good for very small 
structures (eg thin wires). But difficulty in imposing appropriate boundary 
conditions (rough surfaces).

• Some sort of “statistical” approach,  relying on vortex growth equations of 
the type originally developed in connection with thermal counterflow
turbulence,  or on concepts like quasi-classical flow and eddy viscosity.  
Good for large structures.  

• Switching and hysteresis



Computer simulations I

Smooth oscillating sphere, T = 0,  R = 100 μm with remanent vortex (200Hz)  
(Hanninen, Tsubota, Vinen,  PRB 75, 064502, 2007)

• Suggests rapid increase in vortex density when velocity exceeds critical 
value of about 120 mm s-1;  critical velocity significantly larger than 
observed by Schoepe with a rough sphere.  No hysteresis.

• But computer limitations did not allow us to follow the increase in vortex 
density to a steady state.

• Need for nucleating vortex.  Does the form of the nucleating vortex matter? 
Focus on behaviour as velocity is reduced from a large value. 

movie




Computer simulations II

Smooth oscillating sphere,  T = 0,   
R = 3μm, triggered by injected 
vortex rings (1.59 kHz).   Goto et al,  
PRL 100, 045301 (2008); Fujiyama & 
Tsubota, PRB 79, 094513, 2009

Note that a steady state (albeit with 
large fluctuations) can be achieved 
with this very small sphere at 
velocities that are not too high

Computation of drag 
coefficient           
Why does            
CD → 1?



An avalanche described analytically

The simulations with the large sphere suggest that when the velocity of the 
sphere exceeds a critical value the vortex density suddenly grows in a kind of  
avalanche.
Hanninen & Schoepe (JLTP 153, 189, 2008) have suggested that such an 
avalanche might be described by a generalization by Kopnin of an equation 
that was originally suggested in connection with thermal counterflow

[ ]223 LLv
dt
dL

s κβ −=

This equation describes the rate of change of line density when the 
superfluid moves at a uniform,  time independent, velocity vs relative to a 
fixed normal fluid.

Some difficulties

• A generalization to the case of an oscillating flow seems questionable. 

Nevertheless the basic idea of an avalanche may be right, at least in some 
cases.  It may lead to a critical superfluid velocity                but does not 
account for the detailed dependence of CD on velocity. 

( ) 21κω~

• Kopnin’s derivation (PRL 92, 135301, 2004). Based on the HVBK equations.  
Take some sort of course-grained average;  then put vorticity ω = κL.  But in this 
context ω ≠ κL; κL is related to the enstrophy, not the vorticity.

( ) ααβ BA −′−= 1



Another argument for vortex growth when vs > (κω)1/2

• Oscillation at frequency ω generates 
Kelvin waves with half wavelength  
~(κ/ω)1/2.

• A reconnection at the surface of the 
sphere produces a vortex loop of radius 
R ~ (κ/ω)1/2.

• This loop will expand under the influence 
of the velocity U of the sphere if U > ~ κ/R 
~ (κω)1/2.   

A critical velocity ~ (κω)1/2 comes from a simple dimensional if it is assumed 
to be independent of the size of the structure.

Another argument is simply this:  



Reconsideration of the experimental results I

Especially from larger structures,  where high densities of vortex lines are 
probably generated.  

Let us remember that when the superfluid contains a high density of vortex 
lines it seems to behave like a classical fluid, on length scales greater than 
the line spacing .  If both fluids are present and are not forced to move with 
different velocities,  the turbulent motions in both fluids are strongly coupled,  
and we have in effect, on scales > , a single classical fluid (quasi-classical 
behaviour).  

What is the effective kinematic viscosity of this quasi-classical fluid?  

• If there is no normal fluid,  it is presumably something like an eddy 
viscosity,  due to turbulent motion on a scale .  In that case the effective 
kinematic viscosity is of order κ.  

• If both fluids are present,  the effective kinematic viscosity arises from a 
combination of this eddy viscosity and the normal-fluid viscosity. It is still of 
order κ (for 4He).  



Reconsideration of the experimental results II

Look now at the results that are often observed with vibrating forks.

Schematically 
(low T)   →

• At high U we expect quasi-classical flow:  CD ~ 1

• If this persists to lower U we get the green line.

• But as U approaches the transition to laminar 
flow CD drops, rather suddenly , leaving no 
contribution from the superfluid.  Significant?

• Consider what happens as we reduce U 
(hysteresis)

Fitting formula:  
see talk by Skrbek



Reservations?

The maximum in CD is not always seen.  Perhaps the transition from 
turbulent superfluid to potential-flow superfluid can in some cases be more 
gradual.  But,  if so,  we do not know why.

The fact that the superfluid critical is close to the laminar-turbulent transition 
in the quasi-classical fluid may be an accident.  But if the Hanninen-Schoepe
scenario were right,  one would expect no connection between these two 
transitions.
Values of the effective kinematic viscosity deduced by fitting a formula based 
on our model seem to vary from one fork to another is a strange way 
(although the order of magnitude is always right). 

These are serious reservations,  but more experiments will throw light on the 
situation.

But suppose there really is a connection between the superfluid critical 
velocity and the quasi-classical transition.  Why might it exist?  (Blazkova, 
Schmoranzer, Skrbek, Vinen:  PRB in press)

This connection would provide another explanation for the ω1/2 frequency 
dependence.



A difference between classical and quantum turbulence

The connection may be related to an interesting difference between quantum 
and classical turbulence.  

In classical turbulence we can generate an initial turbulent state on a single 
large length scale  (>> Kolmogorov dissipation length):  a scale 
corresponding to,  for example,  the size of an obstacle.

In quantum turbulence this impossible,  in the sense that large scale 
turbulence is possible only in the presence of a suitably large density of 
vortex lines,  suitably polarized,  which allows rotation on a large length 
scale;  i.e. the large scale turbulence requires the presence of small scale 
turbulence on a scale of order the vortex-line spacing.



A possible connection with the quasi-classical transition?

Thus quasi-classical coupled flow requires a 
minimum density of vortex lines. That 
minimum density may be such that the line 
spacing is much less than the viscous 
penetration depth for the coupled fluids.  
But, as we say, this high density of vortex line 
means strongly developed turbulence at short 
length scales.  An efficient way of generating 
turbulence on a short length scale is by decay 
of turbulence on a large length scale through 
the action of the non-linear term [(v.∇)v] in the 
Navier-Stokes (or Euler) equation. 

Perhaps the high density of vortex line required if the superfluid flow is to 
mimic classical turbulence can be generated only if the superfluid is already 
turbulent on a large length scale.  So to get large scale turbulence you need 
to have small scale turbulence first;  but to get sufficiently intense small-scale 
turbulence you must first have large scale turbulence.



Another view of this connection

Suppose we start at a high velocity and 
gradually reduce the velocity.  
As long as the flow is fully turbulent,  a 
sufficient density of vortex lines is 
maintained by the decay of the quasi-
classical turbulence.
But,  as the velocity at which this quasi-
classical turbulence would give way to 
quasi-laminar flow,  this process for 
generating vortex lines starts to fail.  The 
density of vortex lines falls to a low value,  
and we are left with laminar viscous flow of 
the normal fluid and (practically) potential 
flow of the superfluid.
What happens if we start at a low velocity and increase it.  At first we have 
laminar flow of the normal fluid and potential flow of the superfluid.  When the 
velocity exceeds the quasi-classical critical velocity this situation becomes  
unstable,  or perhaps metastable.  A transition to quasi-classical coupled 
turbulence can occur,  perhaps with hysteresis.



Vortex lines and drag at subcritical velocities

According to our discussion the vortex density and an associated drag  ought 
not to disappear at velocities below the quasi-classical critical velocity;  it 
ought simply to be very small (true for both the avalanche process and my 
alternative process)..

A small,  subcritical, dissipation 
would be most easily seen at 
very low temperatures.

Very recent results from 
Lancaster may have seen it

• Bradley et al.,  JLTP 154, 
97, 2009  - vibrating wire.  

• Garg et al,  this meeting  -
vibrating grid)



The Hanninen-Schoepe critical velocity?

Perhaps the mechanism underlying this critical velocity does exist,  but only 
at velocities higher than those we are now considering.  

If the Hanninen-Tsubota-Vinen simulations are to be believed,  then it 
probably is higher.



Closing comments.

Practically the whole of this presentation has been speculation. But it does 
emphasize the need for more experimental evidence on a range of large 
oscillating structures,  with a careful study of the way in which the drag 
coefficient varies with velocity over a wide range of velocity. There is also a 
need to visualize the flow.

We are still a long way from an understanding of the way vibrating structures 
work in superfluid 4He.  But the possibilities we have been exploring do 
suggest that interesting and potentially important effects may well be 
relevant.  We should not simply give up!

Thank you

We have not touched on superfluid 3He – probably very different! 


