

The Abdus Salam International Centre for Theoretical Physics

2023-23

Workshop on Topics in Quantum Turbulence

16 - 20 March 2009

Simulations on Vibrating Structures and a Simple Model for the Critical Velocity

R.M. Hanninen Helsinki University of Technology Low Temperature Laboratory Helsinki Finland

Simulations on Vibrating Sphere and Tilted Rotating Cylinder

R. Hänninen

Low Temperature Laboratory, Helsinki University of Technology

Workshop on Topics in Quantum Turbulence, Trieste, 2009

Outline

1 Vibrating Sphere

- Introduction
- Numerical simulations with vortex filament model
- What is the steady state like?

2 Tilted rotating cylinder: steady state turbulence?

- Background and motivation
- Motion of ideal fluid
- Vortex configurations and steady states
- Summary

Vibrating structures in helium superfluids

Many different structures:

- grids
- wires
- forks
- spheres
 - most simple case numerically

- M. Niemetz and W. Schoepe, J. Low Temp. Phys. 135, 447 (2004).
- J. Jäger, B. Schuderer, and W. Schoepe, Physica B 210, 201 (1995).
- J. Jäger, B. Schuderer, and W. Schoepe, Phys. Rev. Lett. 74, 566 (1995).
- W. Schoepe, Phys. Rev. Lett. 92, 095301 (2004).

Vibrating Sphere

Oscillating flow around sphere, $v > v_c$

⁴He-II, R = 0.1 mm, v = 150 mm/s, f = 200Hz, T=0:

R. Hänninen Trieste 2009

Vibrating Sphere

Oscillating flow around sphere, $v > v_c$

⁴He-II, R = 0.1 mm, v = 200 mm/s, f = 200Hz, T=1.5K (Stokes flow for v_n):

Oscillating flow around sphere, $v > v_c$

⁴He-II, R = 0.1 mm, v = 120 mm/s, f = 200Hz, T=1.5K (Stokes flow for v_n):

Vibrating Sphere

Oscillating flow around sphere

⁴He-II, R = 0.1 mm, f = 200Hz:

Vortex number, T=0.

Critical velocity $v_c \approx 100 \text{ mm/s}$.

Vortex number T=1.5K. (Stokes for v_n .)

Numerical problems/chalenges

- difficult to reach a steady state
- limited range of length scales
- hard to estimate the numerical dissipation at low temperatures
- rouch surfaces may alter results
- what is the normal component doing at finite temperatures?
- calculation of the damping force is a complicated task
- no clear evidence for $v_c \propto \sqrt{\kappa \omega}$

What is the steady state like?

"Large" structures (spheres, grids, forks, thick wires):

- large number of vortices, vortex avalanche?
- mimicing normal flow? (no such indication in simulations with sphere of R=100 μ m)
- "Small" structures (thin wires)
 - simulations do not indicate a vortex avalanche (sphere of R=10µm, numerical problem?)
 - can a single (or few) vortex cause the observed damping for small structures?

Consider Osaka measurements for thin wires at low temperatures: H. Yano *et al.* PRB **75**, 012502 (2007).

Vibrating Sphere

Tilted rotating cylinder

Effect of single vortex

Extra return force due to vortex tension:

$$T_{\rm v} = \rho_{\rm s} \kappa^2 \ln(\ell/a)/2\pi$$

direction depends on the vortex orientation.

■ simulations $\rightarrow \eta \approx 90^{o}$ when oscillation amplitude, x, is close to sphere radius, R, therefore sin $\eta \approx x/\sqrt{x^2 + R^2}$.

All this results that $\omega^2 = \omega_0^2 + T_v/(RM)$, where M is the mass of the wire.

Osaka parameters: $R=1.25\mu$ m, $R_{loop}{=}1$ mm ightarrow $Mpprox 10^{-10}$ kg.

$$\Delta \omega \approx 0.25 \text{Hz}$$

Vibrating Sphere

Tilted rotating cylinder

Tilt of the cylinder axis

Perfect alignment

Small misalignment

Previous results

Result by Mathieu et al., PRB 1984:

- Using continuous model for vorticity
- Rectangular cavity with infinite lenght along y-direction
- Assumed that $\omega \parallel \Omega$ deep in the cavity

Motion of ideal fluid:

Consider a situation (at some particular time) where $\mathbf{\Omega} = \mathbf{\Omega} \hat{\mathbf{Z}}$ and the cylinder axis is along $\hat{\mathbf{z}} = \cos \eta \hat{\mathbf{Z}} + \sin \eta \hat{\mathbf{X}}$. Cartesian(X, Y, Z) and cylindrical (ρ, ϕ, z) coordinates are related by

$$X = \rho \cos \phi \cos \eta + z \sin \eta$$

$$Y = \rho \sin \phi$$

$$Z = -\rho \cos \phi \sin \eta + z \cos \eta.$$

In cylindrical coordinates Ω and r are given by

$$\begin{aligned} \mathbf{\Omega} &= & \Omega \left[-\sin\eta \cos\phi \hat{\boldsymbol{\rho}} + \sin\eta \sin\phi \hat{\boldsymbol{\phi}} + \cos\eta \hat{\mathbf{z}} \right] \\ \mathbf{r} &= & \rho \hat{\boldsymbol{\rho}} + z \hat{\mathbf{z}} \end{aligned}$$

Without vortices $\mathbf{v} = \nabla \Phi \Rightarrow \nabla^2 \Phi = 0$.

$$\frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho\frac{\partial\Phi}{\partial\rho}\right) + \frac{1}{\rho^2}\frac{\partial^2\Phi}{\partial\phi^2} + \frac{\partial^2\Phi}{\partial z^2} = 0$$

Boundary condition: $\frac{\partial \Phi}{\partial n} = \hat{\mathbf{n}} \cdot (\mathbf{\Omega} \times \mathbf{r})$ implies:

$$\frac{\partial \Phi}{\partial \rho}_{\mid_{\rho=R}} = \Omega z \sin \eta \sin \phi, \qquad \frac{\partial \Phi}{\partial z}_{\mid_{z=\pm L/2}} = -\Omega \rho \sin \eta \sin \phi$$

These are in lab. frame. In rotating frame:

$$\mathbf{v}=\nabla\Phi-\mathbf{\Omega}\times\mathbf{r}$$

Т

Tilted rotating cylinder

Trial
$$\Phi(\rho, \phi, z) = \Omega(\rho z + g(\rho, z)) \sin \phi \sin \eta$$
:
 $\frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial g}{\partial \rho} \right) + \frac{\partial^2 g}{\partial z^2} - \frac{1}{\rho^2} g = 0$
 $\frac{\partial g}{\partial \rho}\Big|_{\rho=R} = 0 \qquad \frac{\partial g}{\partial z}\Big|_{z=\pm L/2} = -2\rho.$

Velocity components in the rotating frame are then given by

$$\begin{aligned} v_{\rho} &= \Omega \sin \phi \sin \eta \frac{\partial g}{\partial \rho} \\ v_{\phi} &= \Omega \cos \phi \sin \eta \frac{g}{\rho} - \Omega \rho \cos \eta \\ v_{z} &= \Omega \sin \phi \sin \eta (2\rho + \frac{\partial g}{\partial z}) \end{aligned}$$

Now one can do vortex filament calculations in rotating frame with $\mathbf{v}_n = 0$ and $\mathbf{v}_s = \mathbf{v} + \mathbf{v}_{\omega} + \mathbf{v}_{b}$, where \mathbf{v} is due to rotation.

Single vortex inside rotating tilted cylinder

Configuration for Singe Vortex, $\Omega = 0.5 \text{rad/s}$

Here $\eta = 0, 10, 20, ...,$ and 90 degrees. Vortex is practically on the xz-plane (defined by rotation and cylinder axis). (*Left*) L = R = 3mm, (*Middle*) L = 4R = 12mm, and (*Right*) L = 20R = 60mm (only upper half is plotted)

Vortex array in infinitely long cylinder (g=0)

$$v_{
ho} = 0$$
 $v_{\phi} = -\Omega
ho \cos \eta$ $v_z = 2\Omega
ho \sin \phi \sin \eta$

Vortex density due to reduced azimuthal counterflow is

$$n_{\rm v} = 2\Omega \cos \eta / \kappa \tag{1}$$

Axial velocity affects the vortex configuration only when it is above the Glaberson critical value. Since $v_{z,max} = 2\rho\Omega \sin \eta$, the vortices suffer the instability if $(\nu = \kappa \ln(1/ka_0)/(4\pi) \approx \kappa)$

$$N > N_{\rm c} = 2\pi \frac{\nu}{\kappa} \cot^2 \eta \approx 2\pi \cot^2 \eta.$$
 (2)

Numerically^{(*} with $\eta = 30^{\circ}$ ($N_c \approx 19$) a vortex cluster with N=22 is stable and N=25 Kelvin waves appear.

* with L = 30 mm (periodic b.c.), R = 6 mm, $\Omega = 100$ mrad/s and $T = 0.5T_c$

Finite cylinder, small tilt or Ω

L = 10R = 30mm, $\Omega = 50$ mrad/s, $\eta = 15^{\circ}$, static steady state:

R. Hänninen

Trieste 2009

Finite cylinder, large tilt or Ω

L = 6R = 18mm, $\Omega = 0.25$ rad/s, $T = 0.4T_c$, $\eta = 30^{\circ}$, dynamic steady state:

Finite cylinder, large tilt or Ω

L = 5mm, R = 3mm, $\Omega = 0.25$ rad/s, T = 0, $\eta = 30^{\circ}$:

Finite cylinder, large tilt or Ω

L = 5mm, R = 3mm, $\Omega = 0.25$ rad/s, high T ($\alpha = 10, \alpha' = 0.1$), $\eta = 30^{\circ}$:

- with large enough tilt vortices become unstable
- unexpected configuration for single vortex
- possible to obtain dynamic steady state and polarized turbulence

Thank You Very Much for Your Attention!

