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Vibrating structures in helium superfluids

Many different structures:

grids

wires

forks
spheres

most simple case numerically

M. Niemetz and W. Schoepe, J. Low Temp. Phys. 135, 447 (2004).

J. Jäger, B. Schuderer, and W. Schoepe, Physica B 210, 201 (1995).

J. Jäger, B. Schuderer, and W. Schoepe, Phys. Rev. Lett. 74, 566 (1995).

W. Schoepe, Phys. Rev. Lett. 92, 095301 (2004).
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Oscillating flow around sphere, v > vc

4He-II, R = 0.1 mm, v = 150 mm/s, f = 200Hz, T=0:
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Oscillating flow around sphere, v > vc

4He-II, R = 0.1 mm, v = 200 mm/s, f = 200Hz, T=1.5K (Stokes flow for vn):
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Oscillating flow around sphere, v > vc

4He-II, R = 0.1 mm, v = 120 mm/s, f = 200Hz, T=1.5K (Stokes flow for vn):
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Vibrating Sphere Tilted rotating cylinder

Oscillating flow around sphere

4He-II, R = 0.1 mm, f = 200Hz:

Vortex number, T=0. Vortex number T=1.5K. (Stokes for vn.)

Critical velocity vc ≈ 100 mm/s.
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Numerical problems/chalenges

difficult to reach a steady state

limited range of length scales

hard to estimate the numerical dissipation at low temperatures

rouch surfaces may alter results

what is the normal component doing at finite temperatures?

calculation of the damping force is a complicated task

no clear evidence for vc ∝
√
κω
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What is the steady state like?

“Large” structures (spheres, grids, forks, thick wires):

large number of vortices, vortex avalanche?

mimicing normal flow? (no such indication in simulations with
sphere of R=100µm)

“Small” structures (thin wires)

simulations do not indicate a vortex avalanche (sphere of
R=10µm, numerical problem?)

can a single (or few) vortex cause the observed damping for
small structures?

Consider Osaka measurements for thin wires at low temperatures:
H. Yano et al. PRB 75, 012502 (2007).
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Effect of single vortex

Extra return force due to vortex tension:

Tv = ρsκ
2 ln(`/a)/2π

direction depends on the vortex orientation.

simulations → η ≈ 90o when oscillation
amplitude, x , is close to sphere radius, R,
therefore sin η ≈ x/

√
x2 + R2.

All this results that ω2 = ω2
0 + Tv/(RM), where

M is the mass of the wire.
Osaka parameters: R = 1.25µm, Rloop=1mm →
M ≈ 10−10kg.

∆ω ≈ 0.25Hz
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Tilt of the cylinder axis

Perfect alignment Small misalignment
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Previous results

Result by Mathieu et al., PRB 1984:

Using continuous model for
vorticity

Rectangular cavity with infinite
lenght along y -direction

Assumed that ω ‖ Ω deep in
the cavity
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Tilted rotating cylinder

Motion of ideal fluid:
Consider a situation (at some particular
time) where Ω = ΩẐ and the cylinder
axis is along ẑ = cos ηẐ + sin ηX̂.
Cartesian(X ,Y ,Z ) and cylindrical
(ρ, φ, z) coordinates are related by

X = ρ cosφ cos η + z sin η

Y = ρ sinφ

Z = −ρ cosφ sin η + z cos η.
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Tilted rotating cylinder

In cylindrical coordinates Ω and r are given by

Ω = Ω
[
− sin η cosφρ̂+ sin η sinφφ̂+ cos ηẑ

]
r = ρρ̂+ z ẑ

Without vortices v = ∇Φ ⇒ ∇2Φ = 0.

1

ρ

∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

1

ρ2

∂2Φ

∂φ2
+
∂2Φ

∂z2
= 0

Boundary condition: ∂Φ
∂n = n̂ · (Ω× r) implies:

∂Φ

∂ρ |ρ=R

= Ωz sin η sinφ,
∂Φ

∂z |z=±L/2

= −Ωρ sin η sinφ

These are in lab. frame. In rotating frame:

v = ∇Φ−Ω× r
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Tilted rotating cylinder

Trial Φ(ρ, φ, z) = Ω(ρz + g(ρ, z)) sinφ sin η:

1

ρ

∂

∂ρ

(
ρ
∂g

∂ρ

)
+
∂2g

∂z2
− 1

ρ2
g = 0

∂g

∂ρ |ρ=R

= 0
∂g

∂z |z=±L/2

= −2ρ.

Velocity components in the rotating frame are then given by

vρ = Ω sinφ sin η
∂g

∂ρ

vφ = Ω cosφ sin η
g

ρ
− Ωρ cos η

vz = Ω sinφ sin η(2ρ+
∂g

∂z
)

Now one can do vortex filament calculations in rotating frame with
vn = 0 and vs = v + vω + vb, where v is due to rotation.
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Single vortex inside rotating tilted cylinder

Minimum energy
configuration
when:
Ω = 50 mrad/s
R = 3 mm
L = 30 mm
(T = 0.5Tc)
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Configuration for Singe Vortex, Ω = 0.5rad/s

Here η = 0, 10, 20, . . . , and 90 degrees. Vortex is practically on the xz-plane

(defined by rotation and cylinder axis). (Left) L = R = 3mm, (Middle)

L = 4R = 12mm, and (Right) L = 20R = 60mm (only upper half is plotted)
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Vortex array in infinitely long cylinder (g=0)

vρ = 0 vφ = −Ωρ cos η vz = 2Ωρ sinφ sin η

Vortex density due to reduced azimuthal counterflow is

nv = 2Ω cos η/κ (1)

Axial velocity affects the vortex configuration only when it is above
the Glaberson critical value. Since vz,max = 2ρΩ sin η, the vortices
suffer the instability if (ν = κ ln(1/ka0)/(4π) ≈ κ)

N > Nc = 2π
ν

κ
cot2 η ≈ 2π cot2 η. (2)

Numerically(∗ with η = 30◦ (Nc ≈ 19) a vortex cluster with N=22
is stable and N=25 Kelvin waves appear.

∗with L = 30 mm (periodic b.c.), R = 6 mm, Ω = 100 mrad/s and T = 0.5Tc
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Finite cylinder, small tilt or Ω

L = 10R = 30mm, Ω = 50mrad/s, η = 15o , static steady state:
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Finite cylinder, large tilt or Ω

L = 6R = 18mm, Ω = 0.25rad/s, T = 0.4Tc , η = 30o , dynamic steady state:
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Finite cylinder, large tilt or Ω

L = 5mm, R = 3mm, Ω = 0.25rad/s, T = 0, η = 30o :
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Finite cylinder, large tilt or Ω

L = 5mm, R = 3mm, Ω = 0.25rad/s, high T (α = 10,α′ = 0.1), η = 30o :
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Tilted rotating cylinder:

with large enough tilt
vortices become unstable

unexpected configuration
for single vortex

possible to obtain
dynamic steady state and
polarized turbulence

Thank You Very Much for
Your Attention!
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